University of Illinois Urbana-Champaign
Abstract:In recent years, fine-grained sentiment analysis in finance has gained significant attention, but the scarcity of entity-level datasets remains a key challenge. To address this, we have constructed the largest English and Chinese financial entity-level sentiment analysis datasets to date. Building on this foundation, we propose a novel two-stage sentiment analysis approach called Self-aware In-context Learning Correction (SILC). The first stage involves fine-tuning a base large language model to generate pseudo-labeled data specific to our task. In the second stage, we train a correction model using a GNN-based example retriever, which is informed by the pseudo-labeled data. This two-stage strategy has allowed us to achieve state-of-the-art performance on the newly constructed datasets, advancing the field of financial sentiment analysis. In a case study, we demonstrate the enhanced practical utility of our data and methods in monitoring the cryptocurrency market. Our datasets and code are available at https://github.com/NLP-Bin/SILC-EFSA.
Abstract:Graph Neural Networks (GNNs) have exhibited remarkable efficacy in diverse graph learning tasks, particularly on static homophilic graphs. Recent attention has pivoted towards more intricate structures, encompassing (1) static heterophilic graphs encountering the edge heterophily issue in the spatial domain and (2) event-based continuous graphs in the temporal domain. State-of-the-art (SOTA) has been concurrently addressing these two lines of work but tends to overlook the presence of heterophily in the temporal domain, constituting the temporal heterophily issue. Furthermore, we highlight that the edge heterophily issue and the temporal heterophily issue often co-exist in event-based continuous graphs, giving rise to the temporal edge heterophily challenge. To tackle this challenge, this paper first introduces the temporal edge heterophily measurement. Subsequently, we propose the Temporal Heterophilic Graph Convolutional Network (THeGCN), an innovative model that incorporates the low/high-pass graph signal filtering technique to accurately capture both edge (spatial) heterophily and temporal heterophily. Specifically, the THeGCN model consists of two key components: a sampler and an aggregator. The sampler selects events relevant to a node at a given moment. Then, the aggregator executes message-passing, encoding temporal information, node attributes, and edge attributes into node embeddings. Extensive experiments conducted on 5 real-world datasets validate the efficacy of THeGCN.
Abstract:Self-correction is a novel method that can stimulate the potential reasoning abilities of large language models (LLMs). It involves detecting and correcting errors during the inference process when LLMs solve reasoning problems. However, recent works do not regard self-correction as a spontaneous and intrinsic capability of LLMs. Instead, such correction is achieved through post-hoc generation, external knowledge introduction, multi-model collaboration, and similar techniques. In this paper, we propose a series of mathematical LLMs called S$^3$c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning. This capability helps LLMs to recognize whether their ongoing inference tends to contain errors and simultaneously correct these errors to produce a more reliable response. We proposed a method, which employs a step-level sampling approach to construct step-wise self-correction data for achieving such ability. Additionally, we implement a training strategy that uses above constructed data to equip LLMs with spontaneous step-level self-correction capacities. Our data and methods have been demonstrated to be effective across various foundation LLMs, consistently showing significant progress in evaluations on GSM8K, MATH, and other mathematical benchmarks. To the best of our knowledge, we are the first to introduce the spontaneous step-level self-correction ability of LLMs in mathematical reasoning.
Abstract:Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability, enabling broad applications across diverse domains such as question answering, image recognition, and multimodal retrieval. This approach fully leverages the potential of large-scale pre-trained models, reducing downstream data requirements and computational costs while enhancing model applicability across various tasks. Graphs, as versatile data structures that capture relationships between entities, play pivotal roles in fields such as social network analysis, recommender systems, and biological graphs. Despite the success of pre-train and prompt learning paradigms in Natural Language Processing (NLP) and Computer Vision (CV), their application in graph domains remains nascent. In graph-structured data, not only do the node and edge features often have disparate distributions, but the topological structures also differ significantly. This diversity in graph data can lead to incompatible patterns or gaps between pre-training and fine-tuning on downstream graphs. We aim to bridge this gap by summarizing methods for alleviating these disparities. This includes exploring prompt design methodologies, comparing related techniques, assessing application scenarios and datasets, and identifying unresolved problems and challenges. This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications, including text-attributed graphs, molecules, proteins, and recommendation systems. Through this extensive review, we provide a foundational understanding of graph prompt learning, aiming to impact not only the graph mining community but also the broader Artificial General Intelligence (AGI) community.
Abstract:Quotations in literary works, especially novels, are important to create characters, reflect character relationships, and drive plot development. Current research on quotation extraction in novels primarily focuses on quotation attribution, i.e., identifying the speaker of the quotation. However, the addressee of the quotation is also important to construct the relationship between the speaker and the addressee. To tackle the problem of dataset scarcity, we annotate the first Chinese quotation corpus with elements including speaker, addressee, speaking mode and linguistic cue. We propose prompt learning-based methods for speaker and addressee identification based on fine-tuned pre-trained models. Experiments on both Chinese and English datasets show the effectiveness of the proposed methods, which outperform methods based on zero-shot and few-shot large language models.
Abstract:The learning objective is integral to collaborative filtering systems, where the Bayesian Personalized Ranking (BPR) loss is widely used for learning informative backbones. However, BPR often experiences slow convergence and suboptimal local optima, partially because it only considers one negative item for each positive item, neglecting the potential impacts of other unobserved items. To address this issue, the recently proposed Sampled Softmax Cross-Entropy (SSM) compares one positive sample with multiple negative samples, leading to better performance. Our comprehensive experiments confirm that recommender systems consistently benefit from multiple negative samples during training. Furthermore, we introduce a \underline{Sim}plified Sampled Softmax \underline{C}ross-\underline{E}ntropy Loss (SimCE), which simplifies the SSM using its upper bound. Our validation on 12 benchmark datasets, using both MF and LightGCN backbones, shows that SimCE significantly outperforms both BPR and SSM.
Abstract:Recent text-to-video (T2V) technology advancements, as demonstrated by models such as Gen2, Pika, and Sora, have significantly broadened its applicability and popularity. Despite these strides, evaluating these models poses substantial challenges. Primarily, due to the limitations inherent in automatic metrics, manual evaluation is often considered a superior method for assessing T2V generation. However, existing manual evaluation protocols face reproducibility, reliability, and practicality issues. To address these challenges, this paper introduces the Text-to-Video Human Evaluation (T2VHE) protocol, a comprehensive and standardized protocol for T2V models. The T2VHE protocol includes well-defined metrics, thorough annotator training, and an effective dynamic evaluation module. Experimental results demonstrate that this protocol not only ensures high-quality annotations but can also reduce evaluation costs by nearly 50%. We will open-source the entire setup of the T2VHE protocol, including the complete protocol workflow, the dynamic evaluation component details, and the annotation interface code. This will help communities establish more sophisticated human assessment protocols.
Abstract:In the realm of personalized recommender systems, the challenge of adapting to evolving user preferences and the continuous influx of new users and items is paramount. Conventional models, typically reliant on a static training-test approach, struggle to keep pace with these dynamic demands. Streaming recommendation, particularly through continual graph learning, has emerged as a novel solution. However, existing methods in this area either rely on historical data replay, which is increasingly impractical due to stringent data privacy regulations; or are inability to effectively address the over-stability issue; or depend on model-isolation and expansion strategies. To tackle these difficulties, we present GPT4Rec, a Graph Prompt Tuning method for streaming Recommendation. Given the evolving user-item interaction graph, GPT4Rec first disentangles the graph patterns into multiple views. After isolating specific interaction patterns and relationships in different views, GPT4Rec utilizes lightweight graph prompts to efficiently guide the model across varying interaction patterns within the user-item graph. Firstly, node-level prompts are employed to instruct the model to adapt to changes in the attributes or properties of individual nodes within the graph. Secondly, structure-level prompts guide the model in adapting to broader patterns of connectivity and relationships within the graph. Finally, view-level prompts are innovatively designed to facilitate the aggregation of information from multiple disentangled views. These prompt designs allow GPT4Rec to synthesize a comprehensive understanding of the graph, ensuring that all vital aspects of the user-item interactions are considered and effectively integrated. Experiments on four diverse real-world datasets demonstrate the effectiveness and efficiency of our proposal.
Abstract:Zero-shot hashing (ZSH) has shown excellent success owing to its efficiency and generalization in large-scale retrieval scenarios. While considerable success has been achieved, there still exist urgent limitations. Existing works ignore the locality relationships of representations and attributes, which have effective transferability between seeable classes and unseeable classes. Also, the continuous-value attributes are not fully harnessed. In response, we conduct a COMprehensive Attribute Exploration for ZSH, named COMAE, which depicts the relationships from seen classes to unseen ones through three meticulously designed explorations, i.e., point-wise, pair-wise and class-wise consistency constraints. By regressing attributes from the proposed attribute prototype network, COMAE learns the local features that are relevant to the visual attributes. Then COMAE utilizes contrastive learning to comprehensively depict the context of attributes, rather than instance-independent optimization. Finally, the class-wise constraint is designed to cohesively learn the hash code, image representation, and visual attributes more effectively. Experimental results on the popular ZSH datasets demonstrate that COMAE outperforms state-of-the-art hashing techniques, especially in scenarios with a larger number of unseen label classes.
Abstract:Recent progress with LLM-based agents has shown promising results across various tasks. However, their use in answering questions from knowledge bases remains largely unexplored. Implementing a KBQA system using traditional methods is challenging due to the shortage of task-specific training data and the complexity of creating task-focused model structures. In this paper, we present Triad, a unified framework that utilizes an LLM-based agent with three roles for KBQA tasks. The agent is assigned three roles to tackle different KBQA subtasks: agent as a generalist for mastering various subtasks, as a decision maker for the selection of candidates, and as an advisor for answering questions with knowledge. Our KBQA framework is executed in four phases, involving the collaboration of the agent's multiple roles. We evaluated the performance of our framework using three benchmark datasets, and the results show that our framework outperforms state-of-the-art systems on the LC-QuAD and YAGO-QA benchmarks, yielding F1 scores of 11.8% and 20.7%, respectively.