Abstract:Compared to image-text pair data, interleaved corpora enable Vision-Language Models (VLMs) to understand the world more naturally like humans. However, such existing datasets are crawled from webpage, facing challenges like low knowledge density, loose image-text relations, and poor logical coherence between images. On the other hand, the internet hosts vast instructional videos (e.g., online geometry courses) that are widely used by humans to learn foundational subjects, yet these valuable resources remain underexplored in VLM training. In this paper, we introduce a high-quality \textbf{multimodal textbook} corpus with richer foundational knowledge for VLM pretraining. It collects over 2.5 years of instructional videos, totaling 22,000 class hours. We first use an LLM-proposed taxonomy to systematically gather instructional videos. Then we progressively extract and refine visual (keyframes), audio (ASR), and textual knowledge (OCR) from the videos, and organize as an image-text interleaved corpus based on temporal order. Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment. Experiments demonstrate its superb pretraining performance, particularly in knowledge- and reasoning-intensive tasks like ScienceQA and MathVista. Moreover, VLMs pre-trained on our textbook exhibit outstanding interleaved context awareness, leveraging visual and textual cues in their few-shot context for task solving~\footnote{Our code are available at \url{https://github.com/DAMO-NLP-SG/multimodal_textbook}}.
Abstract:Large language model-based explainable recommendation (LLM-based ER) systems show promise in generating human-like explanations for recommendations. However, they face challenges in modeling user-item collaborative preferences, personalizing explanations, and handling sparse user-item interactions. To address these issues, we propose GaVaMoE, a novel Gaussian-Variational Gated Mixture of Experts framework for explainable recommendation. GaVaMoE introduces two key components: (1) a rating reconstruction module that employs Variational Autoencoder (VAE) with a Gaussian Mixture Model (GMM) to capture complex user-item collaborative preferences, serving as a pre-trained multi-gating mechanism; and (2) a set of fine-grained expert models coupled with the multi-gating mechanism for generating highly personalized explanations. The VAE component models latent factors in user-item interactions, while the GMM clusters users with similar behaviors. Each cluster corresponds to a gate in the multi-gating mechanism, routing user-item pairs to appropriate expert models. This architecture enables GaVaMoE to generate tailored explanations for specific user types and preferences, mitigating data sparsity by leveraging user similarities. Extensive experiments on three real-world datasets demonstrate that GaVaMoE significantly outperforms existing methods in explanation quality, personalization, and consistency. Notably, GaVaMoE exhibits robust performance in scenarios with sparse user-item interactions, maintaining high-quality explanations even for users with limited historical data.
Abstract:In the social world, humans possess the capability to infer and reason about others mental states (such as emotions, beliefs, and intentions), known as the Theory of Mind (ToM). Simultaneously, humans own mental states evolve in response to social situations, a capability we refer to as socialization. Together, these capabilities form the foundation of human social interaction. In the era of artificial intelligence (AI), especially with the development of large language models (LLMs), we raise an intriguing question: How do LLMs perform in terms of ToM and socialization capabilities? And more broadly, can these AI models truly enter and navigate the real social world? Existing research evaluating LLMs ToM and socialization capabilities by positioning LLMs as passive observers from a third person perspective, rather than as active participants. However, compared to the third-person perspective, observing and understanding the world from an egocentric first person perspective is a natural approach for both humans and AI agents. The ToM and socialization capabilities of LLMs from a first person perspective, a crucial attribute for advancing embodied AI agents, remain unexplored. To answer the aforementioned questions and bridge the research gap, we introduce EgoSocialArena, a novel framework designed to evaluate and investigate the ToM and socialization capabilities of LLMs from a first person perspective. It encompasses two evaluation environments: static environment and interactive environment, with seven scenarios: Daily Life, Counterfactual, New World, Blackjack, Number Guessing, and Limit Texas Hold em, totaling 2,195 data entries. With EgoSocialArena, we have conducted a comprehensive evaluation of nine advanced LLMs and observed some key insights regarding the future development of LLMs as well as the capabilities levels of the most advanced LLMs currently available.
Abstract:Information Extraction (IE) and Text Classification (CLS) serve as the fundamental pillars of NLU, with both disciplines relying on analyzing input sequences to categorize outputs into pre-established schemas. However, there is no existing encoder-based model that can unify IE and CLS tasks from this perspective. To fully explore the foundation shared within NLU tasks, we have proposed a Recursive Method with Explicit Schema Instructor for Universal NLU. Specifically, we firstly redefine the true universal information extraction (UIE) with a formal formulation that covers almost all extraction schemas, including quadruples and quintuples which remain unsolved for previous UIE models. Then, we expands the formulation to all CLS and multi-modal NLU tasks. Based on that, we introduce RexUniNLU, an universal NLU solution that employs explicit schema constraints for IE and CLS, which encompasses all IE and CLS tasks and prevent incorrect connections between schema and input sequence. To avoid interference between different schemas, we reset the position ids and attention mask matrices. Extensive experiments are conducted on IE, CLS in both English and Chinese, and multi-modality, revealing the effectiveness and superiority. Our codes are publicly released.
Abstract:Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. \textbf{This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs} like Claude-3.5-Sonnet and GPT-4o in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks. Our code is available at: \url{https://github.com/zwq2018/Multi-modal-Self-instruct}.
Abstract:Theory of Mind (ToM)-the cognitive ability to reason about mental states of ourselves and others, is the foundation of social interaction. Although ToM comes naturally to humans, it poses a significant challenge to even the most advanced Large Language Models (LLMs). Due to the complex logical chains in ToM reasoning, especially in higher-order ToM questions, simply utilizing reasoning methods like Chain of Thought (CoT) will not improve the ToM capabilities of LLMs. We present TimeToM, which constructs a temporal space and uses it as the foundation to improve the ToM capabilities of LLMs in multiple scenarios. Specifically, within the temporal space, we construct Temporal Belief State Chain (TBSC) for each character and inspired by the cognition perspective of the social world model, we divide TBSC into self-world beliefs and social world beliefs, aligning with first-order ToM (first-order beliefs) and higher-order ToM (higher-order beliefs) questions, respectively. Moreover, we design a novel tool-belief solver that, by considering belief communication between characters in temporal space, can transform a character's higher-order beliefs into another character's first-order beliefs under belief communication period. Experimental results indicate that TimeToM can dramatically improve the reasoning performance of LLMs on ToM questions while taking a big step towards coherent and robust ToM reasoning.
Abstract:Large Language Models (LLMs) have demonstrated remarkable potential in handling complex reasoning tasks by generating step-by-step rationales.Some methods have proven effective in boosting accuracy by introducing extra verifiers to assess these paths. However, existing verifiers, typically trained on binary-labeled reasoning paths, fail to fully utilize the relative merits of intermediate steps, thereby limiting the effectiveness of the feedback provided. To overcome this limitation, we propose Tree-based Preference Learning Verifier (Tree-PLV), a novel approach that constructs reasoning trees via a best-first search algorithm and collects step-level paired data for preference training. Compared to traditional binary classification, step-level preferences more finely capture the nuances between reasoning steps, allowing for a more precise evaluation of the complete reasoning path. We empirically evaluate Tree-PLV across a range of arithmetic and commonsense reasoning tasks, where it significantly outperforms existing benchmarks. For instance, Tree-PLV achieved substantial performance gains over the Mistral-7B self-consistency baseline on GSM8K (67.55% to 82.79%), MATH (17.00% to 26.80%), CSQA (68.14% to 72.97%), and StrategyQA (82.86% to 83.25%).Additionally, our study explores the appropriate granularity for applying preference learning, revealing that step-level guidance provides feedback that better aligns with the evaluation of the reasoning process.
Abstract:The accurate prediction of stock movements is crucial for investment strategies. Stock prices are subject to the influence of various forms of information, including financial indicators, sentiment analysis, news documents, and relational structures. Predominant analytical approaches, however, tend to address only unimodal or bimodal sources, neglecting the complexity of multimodal data. Further complicating the landscape are the issues of data sparsity and semantic conflicts between these modalities, which are frequently overlooked by current models, leading to unstable performance and limiting practical applicability. To address these shortcomings, this study introduces a novel architecture, named Multimodal Stable Fusion with Gated Cross-Attention (MSGCA), designed to robustly integrate multimodal input for stock movement prediction. The MSGCA framework consists of three integral components: (1) a trimodal encoding module, responsible for processing indicator sequences, dynamic documents, and a relational graph, and standardizing their feature representations; (2) a cross-feature fusion module, where primary and consistent features guide the multimodal fusion of the three modalities via a pair of gated cross-attention networks; and (3) a prediction module, which refines the fused features through temporal and dimensional reduction to execute precise movement forecasting. Empirical evaluations demonstrate that the MSGCA framework exceeds current leading methods, achieving performance gains of 8.1%, 6.1%, 21.7% and 31.6% on four multimodal datasets, respectively, attributed to its enhanced multimodal fusion stability.
Abstract:Improving the reasoning capabilities of large language models (LLMs) has attracted considerable interest. Recent approaches primarily focus on improving the reasoning process to yield a more precise final answer. However, in scenarios involving contextually aware reasoning, these methods neglect the importance of first identifying logical relationships from the context before proceeding with the reasoning. This oversight could lead to a superficial understanding and interaction with the context, potentially undermining the quality and reliability of the reasoning outcomes. In this paper, we propose an information re-organization (InfoRE) method before proceeding with the reasoning to enhance the reasoning ability of LLMs. We first perform a re-organization processing of the contextual content, e.g., documents or paragraphs, to obtain logical relationships. Then, we utilize the re-organized information in the reasoning process. This enables LLMs to deeply understand the contextual content by clearly perceiving these logical relationships. To demonstrate the effectiveness of our approach in improving the reasoning ability, we conduct experiments using Llama2-70B, GPT-3.5, and GPT-4 on various contextually aware multi-hop reasoning tasks. Using only a zero-shot setting, our method achieves an average improvement of 3\% across all tasks, highlighting its potential to improve the reasoning performance of LLMs. Our source code is available at https://github.com/hustcxx/InfoRE.
Abstract:Large Language Models (LLMs) have demonstrated efficacy in various linguistic applications, including text summarization and controlled text generation. However, studies into their capacity of switching between styles via fine-tuning remain underexplored. This study concentrates on textual professionalism and introduces a novel methodology, named ProSwitch, which equips a language model with the ability to produce both professional and non-professional responses through knowledge-guided instruction tuning. ProSwitch unfolds across three phases: data preparation for gathering domain knowledge and training corpus; instruction tuning for optimizing language models with multiple levels of instruction formats; and comprehensive evaluation for assessing the professionalism discrimination and reference-based quality of generated text. Comparative analysis of ProSwitch against both general and specialized language models reveals that our approach outperforms baselines in switching between professional and non-professional text generation.