Abstract:Affine registration plays a crucial role in PET/CT imaging, where aligning PET with CT images is challenging due to their respective functional and anatomical representations. Despite the significant promise shown by recent deep learning (DL)-based methods in various medical imaging applications, their application to multi-modal PET/CT affine registration remains relatively unexplored. This study investigates a DL-based approach for PET/CT affine registration. We introduce a novel method using Parzen windowing to approximate the correlation ratio, which acts as the image similarity measure for training DNNs in multi-modal registration. Additionally, we propose a multi-scale, instance-specific optimization scheme that iteratively refines the DNN-generated affine parameters across multiple image resolutions. Our method was evaluated against the widely used mutual information metric and a popular optimization-based technique from the ANTs package, using a large public FDG-PET/CT dataset with synthetic affine transformations. Our approach achieved a mean Dice Similarity Coefficient (DSC) of 0.870, outperforming the compared methods and demonstrating its effectiveness in multi-modal PET/CT image registration.
Abstract:Recent advancements in text-guided diffusion models have unlocked powerful image manipulation capabilities, yet balancing reconstruction fidelity and editability for real images remains a significant challenge. In this work, we introduce \textbf{T}ask-\textbf{O}riented \textbf{D}iffusion \textbf{I}nversion (\textbf{TODInv}), a novel framework that inverts and edits real images tailored to specific editing tasks by optimizing prompt embeddings within the extended \(\mathcal{P}^*\) space. By leveraging distinct embeddings across different U-Net layers and time steps, TODInv seamlessly integrates inversion and editing through reciprocal optimization, ensuring both high fidelity and precise editability. This hierarchical editing mechanism categorizes tasks into structure, appearance, and global edits, optimizing only those embeddings unaffected by the current editing task. Extensive experiments on benchmark dataset reveal TODInv's superior performance over existing methods, delivering both quantitative and qualitative enhancements while showcasing its versatility with few-step diffusion model.
Abstract:In this paper, we introduce D$^4$-VTON, an innovative solution for image-based virtual try-on. We address challenges from previous studies, such as semantic inconsistencies before and after garment warping, and reliance on static, annotation-driven clothing parsers. Additionally, we tackle the complexities in diffusion-based VTON models when handling simultaneous tasks like inpainting and denoising. Our approach utilizes two key technologies: Firstly, Dynamic Semantics Disentangling Modules (DSDMs) extract abstract semantic information from garments to create distinct local flows, improving precise garment warping in a self-discovered manner. Secondly, by integrating a Differential Information Tracking Path (DITP), we establish a novel diffusion-based VTON paradigm. This path captures differential information between incomplete try-on inputs and their complete versions, enabling the network to handle multiple degradations independently, thereby minimizing learning ambiguities and achieving realistic results with minimal overhead. Extensive experiments demonstrate that D$^4$-VTON significantly outperforms existing methods in both quantitative metrics and qualitative evaluations, demonstrating its capability in generating realistic images and ensuring semantic consistency.
Abstract:Source-free Unsupervised Domain Adaptation (SFDA) aims to classify target samples by only accessing a pre-trained source model and unlabelled target samples. Since no source data is available, transferring the knowledge from the source domain to the target domain is challenging. Existing methods normally exploit the pair-wise relation among target samples and attempt to discover their correlations by clustering these samples based on semantic features. The drawback of these methods includes: 1) the pair-wise relation is limited to exposing the underlying correlations of two more samples, hindering the exploration of the structural information embedded in the target domain; 2) the clustering process only relies on the semantic feature, while overlooking the critical effect of domain shift, i.e., the distribution differences between the source and target domains. To address these issues, we propose a new SFDA method that exploits the high-order neighborhood relation and explicitly takes the domain shift effect into account. Specifically, we formulate the SFDA as a Hypergraph learning problem and construct hyperedges to explore the local group and context information among multiple samples. Moreover, we integrate a self-loop strategy into the constructed hypergraph to elegantly introduce the domain uncertainty of each sample. By clustering these samples based on hyperedges, both the semantic feature and domain shift effects are considered. We then describe an adaptive relation-based objective to tune the model with soft attention levels for all samples. Extensive experiments are conducted on Office-31, Office-Home, VisDA, and PointDA-10 datasets. The results demonstrate the superiority of our method over state-of-the-art counterparts.
Abstract:Understanding the uncertainty inherent in deep learning-based image registration models has been an ongoing area of research. Existing methods have been developed to quantify both transformation and appearance uncertainties related to the registration process, elucidating areas where the model may exhibit ambiguity regarding the generated deformation. However, our study reveals that neither uncertainty effectively estimates the potential errors when the registration model is used for label propagation. Here, we propose a novel framework to concurrently estimate both the epistemic and aleatoric segmentation uncertainties for image registration. To this end, we implement a compact deep neural network (DNN) designed to transform the appearance discrepancy in the warping into aleatoric segmentation uncertainty by minimizing a negative log-likelihood loss function. Furthermore, we present epistemic segmentation uncertainty within the label propagation process as the entropy of the propagated labels. By introducing segmentation uncertainty along with existing methods for estimating registration uncertainty, we offer vital insights into the potential uncertainties at different stages of image registration. We validated our proposed framework using publicly available datasets, and the results prove that the segmentation uncertainties estimated with the proposed method correlate well with errors in label propagation, all while achieving superior registration performance.
Abstract:In this paper, we propose a novel translation model, UniTranslator, for transforming representations between visually distinct domains under conditions of limited training data and significant visual differences. The main idea behind our approach is leveraging the domain-neutral capabilities of CLIP as a bridging mechanism, while utilizing a separate module to extract abstract, domain-agnostic semantics from the embeddings of both the source and target realms. Fusing these abstract semantics with target-specific semantics results in a transformed embedding within the CLIP space. To bridge the gap between the disparate worlds of CLIP and StyleGAN, we introduce a new non-linear mapper, the CLIP2P mapper. Utilizing CLIP embeddings, this module is tailored to approximate the latent distribution in the P space, effectively acting as a connector between these two spaces. The proposed UniTranslator is versatile and capable of performing various tasks, including style mixing, stylization, and translations, even in visually challenging scenarios across different visual domains. Notably, UniTranslator generates high-quality translations that showcase domain relevance, diversity, and improved image quality. UniTranslator surpasses the performance of existing general-purpose models and performs well against specialized models in representative tasks. The source code and trained models will be released to the public.
Abstract:Over the past decade, deep learning technologies have greatly advanced the field of medical image registration. The initial developments, such as ResNet-based and U-Net-based networks, laid the groundwork for deep learning-driven image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, and uncertainty estimation. These advancements have not only enriched the field of deformable image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration.
Abstract:Considering the ill-posed nature, contrastive regularization has been developed for single image dehazing, introducing the information from negative images as a lower bound. However, the contrastive samples are nonconsensual, as the negatives are usually represented distantly from the clear (i.e., positive) image, leaving the solution space still under-constricted. Moreover, the interpretability of deep dehazing models is underexplored towards the physics of the hazing process. In this paper, we propose a novel curricular contrastive regularization targeted at a consensual contrastive space as opposed to a non-consensual one. Our negatives, which provide better lower-bound constraints, can be assembled from 1) the hazy image, and 2) corresponding restorations by other existing methods. Further, due to the different similarities between the embeddings of the clear image and negatives, the learning difficulty of the multiple components is intrinsically imbalanced. To tackle this issue, we customize a curriculum learning strategy to reweight the importance of different negatives. In addition, to improve the interpretability in the feature space, we build a physics-aware dual-branch unit according to the atmospheric scattering model. With the unit, as well as curricular contrastive regularization, we establish our dehazing network, named C2PNet. Extensive experiments demonstrate that our C2PNet significantly outperforms state-of-the-art methods, with extreme PSNR boosts of 3.94dB and 1.50dB, respectively, on SOTS-indoor and SOTS-outdoor datasets.
Abstract:In the past, optimization-based registration models have used spatially-varying regularization to account for deformation variations in different image regions. However, deep learning-based registration models have mostly relied on spatially-invariant regularization. Here, we introduce an end-to-end framework that uses neural networks to learn a spatially-varying deformation regularizer directly from data. The hyperparameter of the proposed regularizer is conditioned into the network, enabling easy tuning of the regularization strength. The proposed method is built upon a Transformer-based model, but it can be readily adapted to any network architecture. We thoroughly evaluated the proposed approach using publicly available datasets and observed a significant performance improvement while maintaining smooth deformation. The source code of this work will be made available after publication.
Abstract:Transformers have recently shown promise for medical image applications, leading to an increasing interest in developing such models for medical image registration. Recent advancements in designing registration Transformers have focused on using cross-attention (CA) to enable a more precise understanding of spatial correspondences between moving and fixed images. Here, we propose a novel CA mechanism that computes windowed attention using deformable windows. In contrast to existing CA mechanisms that require intensive computational complexity by either computing CA globally or locally with a fixed and expanded search window, the proposed deformable CA can selectively sample a diverse set of features over a large search window while maintaining low computational complexity. The proposed model was extensively evaluated on multi-modal, mono-modal, and atlas-to-patient registration tasks, demonstrating promising performance against state-of-the-art methods and indicating its effectiveness for medical image registration. The source code for this work will be available after publication.