Abstract:The emergence of various medical large language models (LLMs) in the medical domain has highlighted the need for unified evaluation standards, as manual evaluation of LLMs proves to be time-consuming and labor-intensive. To address this issue, we introduce MedBench, a comprehensive benchmark for the Chinese medical domain, comprising 40,041 questions sourced from authentic examination exercises and medical reports of diverse branches of medicine. In particular, this benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, the Doctor In-Charge Qualification Examination, and real-world clinic cases encompassing examinations, diagnoses, and treatments. MedBench replicates the educational progression and clinical practice experiences of doctors in Mainland China, thereby establishing itself as a credible benchmark for assessing the mastery of knowledge and reasoning abilities in medical language learning models. We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings: (1) Chinese medical LLMs underperform on this benchmark, highlighting the need for significant advances in clinical knowledge and diagnostic precision. (2) Several general-domain LLMs surprisingly possess considerable medical knowledge. These findings elucidate both the capabilities and limitations of LLMs within the context of MedBench, with the ultimate goal of aiding the medical research community.
Abstract:In recent decades, Generative Adversarial Network (GAN) and its variants have achieved unprecedented success in image synthesis. However, well-trained GANs are under the threat of illegal steal or leakage. The prior studies on remote ownership verification assume a black-box setting where the defender can query the suspicious model with specific inputs, which we identify is not enough for generation tasks. To this end, in this paper, we propose a novel IP protection scheme for GANs where ownership verification can be done by checking outputs only, without choosing the inputs (i.e., box-free setting). Specifically, we make use of the unexploited potential of the discriminator to learn a hypersphere that captures the unique distribution learned by the paired generator. Extensive evaluations on two popular GAN tasks and more than 10 GAN architectures demonstrate our proposed scheme to effectively verify the ownership. Our proposed scheme shown to be immune to popular input-based removal attacks and robust against other existing attacks. The source code and models are available at https://github.com/AbstractTeen/gan_ownership_verification
Abstract:Hadamard single-pixel imaging (HSI) is an appealing imaging technique due to its features of low hardware complexity and industrial cost. To improve imaging efficiency, many studies have focused on sorting Hadamard patterns to obtain reliable reconstructed images with very few samples. In this study, we present an efficient HSI imaging method that employs an exponential probability function to sample Hadamard spectra along a direction with better energy concentration for obtaining Hadamard patterns. We also propose an XY order to further optimize the pattern-selection method with extremely fast Hadamard order generation while retaining the original performance. We used the compressed sensing algorithm for image reconstruction. The simulation and experimental results show that these pattern-selection method reliably reconstructs objects and preserves the edge and details of images.
Abstract:Image-free tracking methods based on single-pixel detection have been able to track a moving object at a very high frame rate, but these tracking methods can not achieve simultaneous imaging of the object. Here we report a method for simultaneously tracking and imaging a high-speed moving object. Four binary Fourier patterns and two differential Hadamard patterns are used to modulate one frame of the object, then the modulated light signals are obtained by single-pixel detection. The trajectory and the image of the moving object can be gradually obtained along with the detection. The proposed method does not need any prior knowledge of the object and its motion. It has been verified by simulations and experiments which achieves a frame rate of 3332$~\mathrm{Hz}$ at a spatial resolution of $128 \times 128$ pixels by using a 20000$~\mathrm{Hz}$ digital micromirror device. This proposed method can broaden the application of image-free tracking methods and realize the detection of spatial information of the moving object.