Abstract:Smart grid, through networked smart meters employing the non-intrusive load monitoring (NILM) technique, can considerably discern the usage patterns of residential appliances. However, this technique also incurs privacy leakage. To address this issue, we propose an innovative scheme based on adversarial attack in this paper. The scheme effectively prevents NILM models from violating appliance-level privacy, while also ensuring accurate billing calculation for users. To achieve this objective, we overcome two primary challenges. First, as NILM models fall under the category of time-series regression models, direct application of traditional adversarial attacks designed for classification tasks is not feasible. To tackle this issue, we formulate a novel adversarial attack problem tailored specifically for NILM and providing a theoretical foundation for utilizing the Jacobian of the NILM model to generate imperceptible perturbations. Leveraging the Jacobian, our scheme can produce perturbations, which effectively misleads the signal prediction of NILM models to safeguard users' appliance-level privacy. The second challenge pertains to fundamental utility requirements, where existing adversarial attack schemes struggle to achieve accurate billing calculation for users. To handle this problem, we introduce an additional constraint, mandating that the sum of added perturbations within a billing period must be precisely zero. Experimental validation on real-world power datasets REDD and UK-DALE demonstrates the efficacy of our proposed solutions, which can significantly amplify the discrepancy between the output of the targeted NILM model and the actual power signal of appliances, and enable accurate billing at the same time. Additionally, our solutions exhibit transferability, making the generated perturbation signal from one target model applicable to other diverse NILM models.
Abstract:Pre-trained models (PTMs) are extensively utilized in various downstream tasks. Adopting untrusted PTMs may suffer from backdoor attacks, where the adversary can compromise the downstream models by injecting backdoors into the PTM. However, existing backdoor attacks to PTMs can only achieve partially task-agnostic and the embedded backdoors are easily erased during the fine-tuning process. In this paper, we propose a novel transferable backdoor attack, TransTroj, to simultaneously meet functionality-preserving, durable, and task-agnostic. In particular, we first formalize transferable backdoor attacks as the indistinguishability problem between poisoned and clean samples in the embedding space. We decompose the embedding indistinguishability into pre- and post-indistinguishability, representing the similarity of the poisoned and reference embeddings before and after the attack. Then, we propose a two-stage optimization that separately optimizes triggers and victim PTMs to achieve embedding indistinguishability. We evaluate TransTroj on four PTMs and six downstream tasks. Experimental results show that TransTroj significantly outperforms SOTA task-agnostic backdoor attacks (18%$\sim$99%, 68% on average) and exhibits superior performance under various system settings. The code is available at https://github.com/haowang-cqu/TransTroj .
Abstract:Adversarial training (AT) is an important and attractive topic in deep learning security, exhibiting mysteries and odd properties. Recent studies of neural network training dynamics based on Neural Tangent Kernel (NTK) make it possible to reacquaint AT and deeply analyze its properties. In this paper, we perform an in-depth investigation of AT process and properties with NTK, such as NTK evolution. We uncover three new findings that are missed in previous works. First, we disclose the impact of data normalization on AT and the importance of unbiased estimators in batch normalization layers. Second, we experimentally explore the kernel dynamics and propose more time-saving AT methods. Third, we study the spectrum feature inside the kernel to address the catastrophic overfitting problem. To the best of our knowledge, it is the first work leveraging the observations of kernel dynamics to improve existing AT methods.
Abstract:DNN accelerators have been widely deployed in many scenarios to speed up the inference process and reduce the energy consumption. One big concern about the usage of the accelerators is the confidentiality of the deployed models: model inference execution on the accelerators could leak side-channel information, which enables an adversary to preciously recover the model details. Such model extraction attacks can not only compromise the intellectual property of DNN models, but also facilitate some adversarial attacks. Although previous works have demonstrated a number of side-channel techniques to extract models from DNN accelerators, they are not practical for two reasons. (1) They only target simplified accelerator implementations, which have limited practicality in the real world. (2) They require heavy human analysis and domain knowledge. To overcome these limitations, this paper presents Mercury, the first automated remote side-channel attack against the off-the-shelf Nvidia DNN accelerator. The key insight of Mercury is to model the side-channel extraction process as a sequence-to-sequence problem. The adversary can leverage a time-to-digital converter (TDC) to remotely collect the power trace of the target model's inference. Then he uses a learning model to automatically recover the architecture details of the victim model from the power trace without any prior knowledge. The adversary can further use the attention mechanism to localize the leakage points that contribute most to the attack. Evaluation results indicate that Mercury can keep the error rate of model extraction below 1%.
Abstract:In recent decades, Generative Adversarial Network (GAN) and its variants have achieved unprecedented success in image synthesis. However, well-trained GANs are under the threat of illegal steal or leakage. The prior studies on remote ownership verification assume a black-box setting where the defender can query the suspicious model with specific inputs, which we identify is not enough for generation tasks. To this end, in this paper, we propose a novel IP protection scheme for GANs where ownership verification can be done by checking outputs only, without choosing the inputs (i.e., box-free setting). Specifically, we make use of the unexploited potential of the discriminator to learn a hypersphere that captures the unique distribution learned by the paired generator. Extensive evaluations on two popular GAN tasks and more than 10 GAN architectures demonstrate our proposed scheme to effectively verify the ownership. Our proposed scheme shown to be immune to popular input-based removal attacks and robust against other existing attacks. The source code and models are available at https://github.com/AbstractTeen/gan_ownership_verification
Abstract:Despite the remarkable success of large-scale Language Models (LLMs) such as GPT-3, their performances still significantly underperform fine-tuned models in the task of text classification. This is due to (1) the lack of reasoning ability in addressing complex linguistic phenomena (e.g., intensification, contrast, irony etc); (2) limited number of tokens allowed in in-context learning. In this paper, we introduce Clue And Reasoning Prompting (CARP). CARP adopts a progressive reasoning strategy tailored to addressing the complex linguistic phenomena involved in text classification: CARP first prompts LLMs to find superficial clues (e.g., keywords, tones, semantic relations, references, etc), based on which a diagnostic reasoning process is induced for final decisions. To further address the limited-token issue, CARP uses a fine-tuned model on the supervised dataset for $k$NN demonstration search in the in-context learning, allowing the model to take the advantage of both LLM's generalization ability and the task-specific evidence provided by the full labeled dataset. Remarkably, CARP yields new SOTA performances on 4 out of 5 widely-used text-classification benchmarks, 97.39 (+1.24) on SST-2, 96.40 (+0.72) on AGNews, 98.78 (+0.25) on R8 and 96.95 (+0.6) on R52, and a performance comparable to SOTA on MR (92.39 v.s. 93.3). More importantly, we find that CARP delivers impressive abilities on low-resource and domain-adaptation setups. Specifically, using 16 examples per class, CARP achieves comparable performances to supervised models with 1,024 examples per class.
Abstract:Point cloud completion task aims to predict the missing part of incomplete point clouds and generate complete point clouds with details. In this paper, we propose a novel point cloud completion network, CompleteDT, which is based on the transformer. CompleteDT can learn features within neighborhoods and explore the relationship among these neighborhoods. By sampling the incomplete point cloud to obtain point clouds with different resolutions, we extract features from these point clouds in a self-guided manner, while converting these features into a series of $patches$ based on the geometrical structure. To facilitate transformers to leverage sufficient information about point clouds, we provide a plug-and-play module named Relation-Augment Attention Module (RAA), consisting of Point Cross-Attention Module (PCA) and Point Dense Multi-Scale Attention Module (PDMA). These two modules can enhance the ability to learn features within Patches and consider the correlation among these Patches. Thus, RAA enables to learn structures of incomplete point clouds and contribute to infer the local details of complete point clouds generated. In addition, we predict the complete shape from $patches$ with an efficient generation module, namely, Multi-resolution Point Fusion Module (MPF). MPF gradually generates complete point clouds from $patches$, and updates $patches$ based on these generated point clouds. Experimental results show that our method largely outperforms the state-of-the-art methods.
Abstract:Deep learning on the point cloud is increasingly developing. Grouping the point with its neighbors and conducting convolution-like operation on them can learn the local feature of the point cloud, but this method is weak to extract the long-distance global feature. Performing the attention-based transformer on the whole point cloud can effectively learn the global feature of it, but this method is hardly to extract the local detailed feature. In this paper, we propose a novel module that can simultaneously extract and fuse local and global features, which is named as CT-block. The CT-block is composed of two branches, where the letter C represents the convolution-branch and the letter T represents the transformer-branch. The convolution-branch performs convolution on the grouped neighbor points to extract the local feature. Meanwhile, the transformer-branch performs offset-attention process on the whole point cloud to extract the global feature. Through the bridge constructed by the feature transmission element in the CT-block, the local and global features guide each other during learning and are fused effectively. We apply the CT-block to construct point cloud classification and segmentation networks, and evaluate the performance of them by several public datasets. The experimental results show that, because the features learned by CT-block are much expressive, the performance of the networks constructed by the CT-block on the point cloud classification and segmentation tasks achieve state of the art.
Abstract:Backdoor attacks pose a new threat to NLP models. A standard strategy to construct poisoned data in backdoor attacks is to insert triggers (e.g., rare words) into selected sentences and alter the original label to a target label. This strategy comes with a severe flaw of being easily detected from both the trigger and the label perspectives: the trigger injected, which is usually a rare word, leads to an abnormal natural language expression, and thus can be easily detected by a defense model; the changed target label leads the example to be mistakenly labeled and thus can be easily detected by manual inspections. To deal with this issue, in this paper, we propose a new strategy to perform textual backdoor attacks which do not require an external trigger, and the poisoned samples are correctly labeled. The core idea of the proposed strategy is to construct clean-labeled examples, whose labels are correct but can lead to test label changes when fused with the training set. To generate poisoned clean-labeled examples, we propose a sentence generation model based on the genetic algorithm to cater to the non-differentiable characteristic of text data. Extensive experiments demonstrate that the proposed attacking strategy is not only effective, but more importantly, hard to defend due to its triggerless and clean-labeled nature. Our work marks the first step towards developing triggerless attacking strategies in NLP.
Abstract:Pre-trained Natural Language Processing (NLP) models can be easily adapted to a variety of downstream language tasks. This significantly accelerates the development of language models. However, NLP models have been shown to be vulnerable to backdoor attacks, where a pre-defined trigger word in the input text causes model misprediction. Previous NLP backdoor attacks mainly focus on some specific tasks. This makes those attacks less general and applicable to other kinds of NLP models and tasks. In this work, we propose \Name, the first task-agnostic backdoor attack against the pre-trained NLP models. The key feature of our attack is that the adversary does not need prior information about the downstream tasks when implanting the backdoor to the pre-trained model. When this malicious model is released, any downstream models transferred from it will also inherit the backdoor, even after the extensive transfer learning process. We further design a simple yet effective strategy to bypass a state-of-the-art defense. Experimental results indicate that our approach can compromise a wide range of downstream NLP tasks in an effective and stealthy way.