Abstract:Due to the lack of a large collection of high-quality labeled sentence pairs with textual similarity scores, existing approaches for Semantic Textual Similarity (STS) mostly rely on unsupervised techniques or training signals that are only partially correlated with textual similarity, e.g., NLI-based datasets. To tackle this issue, in this paper, we propose the strategy of measuring text similarity via GPT annotated data (Sim-GPT for short). The core idea of Sim-GPT is to generate data with STS labels using GPT-4, based on which an STS model is trained. Sim-GPT framework utilizes LLMs to provide a substantial amount of reliable annotated data filling the gap of the lack of training signals for STS. Sim-GPT is trained on a one-time generated dataset using BERT or RoBERTa as the backbone, which offers long-term savings in cost and speed compared to repeatedly invoking LLMs for each sentence pair. Trained on the examples from GPT-4 (371K), Sim-GPT yields SOTA performances on the widely-used seven STS benchmarks: +0.99 over supervised-SimCSE, and +0.42 over the current SOTA PromCSE model. To encourage further advancements of the field, we release both models and the 371K annotated examples from GPT-4. Code, models and annotated data are available at: https://github.com/ShuheWang1998/Sim-GPT.
Abstract:A standard paradigm for sentiment analysis is to rely on a singular LLM and makes the decision in a single round under the framework of in-context learning. This framework suffers the key disadvantage that the single-turn output generated by a single LLM might not deliver the perfect decision, just as humans sometimes need multiple attempts to get things right. This is especially true for the task of sentiment analysis where deep reasoning is required to address the complex linguistic phenomenon (e.g., clause composition, irony, etc) in the input. To address this issue, this paper introduces a multi-LLM negotiation framework for sentiment analysis. The framework consists of a reasoning-infused generator to provide decision along with rationale, a explanation-deriving discriminator to evaluate the credibility of the generator. The generator and the discriminator iterate until a consensus is reached. The proposed framework naturally addressed the aforementioned challenge, as we are able to take the complementary abilities of two LLMs, have them use rationale to persuade each other for correction. Experiments on a wide range of sentiment analysis benchmarks (SST-2, Movie Review, Twitter, yelp, amazon, IMDB) demonstrate the effectiveness of proposed approach: it consistently yields better performances than the ICL baseline across all benchmarks, and even superior performances to supervised baselines on the Twitter and movie review datasets.
Abstract:This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
Abstract:Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines. In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors: (1) token limit in the prompt does not allow for the full utilization of the supervised datasets; (2) mismatch between the generation nature of ChatGPT and NLP tasks; (3) intrinsic pitfalls of LLMs models, e.g., hallucination, overly focus on certain keywords, etc. In this work, we propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks. Our proposed modules include (1) a one-input-multiple-prompts strategy that employs multiple prompts for one input to accommodate more demonstrations; (2) using fine-tuned models for better demonstration retrieval; (3) transforming tasks to formats that are more tailored to the generation nature; (4) employing reasoning strategies that are tailored to addressing the task-specific complexity; (5) the self-verification strategy to address the hallucination issue of LLMs; (6) the paraphrase strategy to improve the robustness of model predictions. We conduct experiments on 21 datasets of 10 representative NLP tasks, including question answering, commonsense reasoning, natural language inference, sentiment analysis, named entity recognition, entity-relation extraction, event extraction, dependency parsing, semantic role labeling, and part-of-speech tagging. Using the proposed assemble of techniques, we are able to significantly boost the performance of ChatGPT on the selected NLP tasks, achieving performances comparable to or better than supervised baselines, or even existing SOTA performances.
Abstract:Despite the remarkable success of large-scale Language Models (LLMs) such as GPT-3, their performances still significantly underperform fine-tuned models in the task of text classification. This is due to (1) the lack of reasoning ability in addressing complex linguistic phenomena (e.g., intensification, contrast, irony etc); (2) limited number of tokens allowed in in-context learning. In this paper, we introduce Clue And Reasoning Prompting (CARP). CARP adopts a progressive reasoning strategy tailored to addressing the complex linguistic phenomena involved in text classification: CARP first prompts LLMs to find superficial clues (e.g., keywords, tones, semantic relations, references, etc), based on which a diagnostic reasoning process is induced for final decisions. To further address the limited-token issue, CARP uses a fine-tuned model on the supervised dataset for $k$NN demonstration search in the in-context learning, allowing the model to take the advantage of both LLM's generalization ability and the task-specific evidence provided by the full labeled dataset. Remarkably, CARP yields new SOTA performances on 4 out of 5 widely-used text-classification benchmarks, 97.39 (+1.24) on SST-2, 96.40 (+0.72) on AGNews, 98.78 (+0.25) on R8 and 96.95 (+0.6) on R52, and a performance comparable to SOTA on MR (92.39 v.s. 93.3). More importantly, we find that CARP delivers impressive abilities on low-resource and domain-adaptation setups. Specifically, using 16 examples per class, CARP achieves comparable performances to supervised models with 1,024 examples per class.
Abstract:Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited.
Abstract:Student modeling, the task of inferring a student's learning characteristics through their interactions with coursework, is a fundamental issue in intelligent education. Although the recent attempts from knowledge tracing and cognitive diagnosis propose several promising directions for improving the usability and effectiveness of current models, the existing public datasets are still insufficient to meet the need for these potential solutions due to their ignorance of complete exercising contexts, fine-grained concepts, and cognitive labels. In this paper, we present MoocRadar, a fine-grained, multi-aspect knowledge repository consisting of 2,513 exercise questions, 5,600 knowledge concepts, and over 12 million behavioral records. Specifically, we propose a framework to guarantee a high-quality and comprehensive annotation of fine-grained concepts and cognitive labels. The statistical and experimental results indicate that our dataset provides the basis for the future improvements of existing methods. Moreover, to support the convenient usage for researchers, we release a set of tools for data querying, model adaption, and even the extension of our repository, which are now available at https://github.com/THU-KEG/MOOC-Radar.
Abstract:Inspired by recent advances in retrieval augmented methods in NLP~\citep{khandelwal2019generalization,khandelwal2020nearest,meng2021gnn}, in this paper, we introduce a $k$ nearest neighbor NER ($k$NN-NER) framework, which augments the distribution of entity labels by assigning $k$ nearest neighbors retrieved from the training set. This strategy makes the model more capable of handling long-tail cases, along with better few-shot learning abilities. $k$NN-NER requires no additional operation during the training phase, and by interpolating $k$ nearest neighbors search into the vanilla NER model, $k$NN-NER consistently outperforms its vanilla counterparts: we achieve a new state-of-the-art F1-score of 72.03 (+1.25) on the Chinese Weibo dataset and improved results on a variety of widely used NER benchmarks. Additionally, we show that $k$NN-NER can achieve comparable results to the vanilla NER model with 40\% less amount of training data. Code available at \url{https://github.com/ShannonAI/KNN-NER}.
Abstract:Intelligent reflecting surfaces (IRSs) have emerged as a promising economical solution to implement cell-free networks. However, the performance gains achieved by IRSs critically depend on smartly tuned passive beamforming based on the assumption that the accurate channel state information (CSI) knowledge is available at the central processing unit (CPU), which is practically impossible. Thus, in this paper, we investigate the impact of the CSI uncertainty on IRS-assisted cell-free networks. We adopt a stochastic method to cope with the CSI uncertainty by maximizing the expectation of the sum-rate, which guarantees the robust performance over the average. Accordingly, an average sum-rate maximization problem is formulated, which is non-convex and arduous to obtain its optimal solution due to the coupled variables and the expectation operation with respect to CSI uncertainties. As a compromising approach, we develop an efficient robust joint design algorithm with low-complexity. Particularly, the original problem is equivalently transformed into a tractable form by employing algebraic manipulations. Then, the locally optimal solution can be obtained iteratively. We further prove that the CSI uncertainty has no direct impact on the optimizing of the passive reflecting beamforming. It is worth noting that the investigated scenario is flexible and general in communications, thus the proposed algorithm can act as a general framework to solve various sum-rate maximization problems. Simulation results demonstrate that IRSs can achieve considerable data rate improvement for conventional cell-free networks, and confirm the resilience of the proposed algorithm against the CSI uncertainty.
Abstract:$k$NN based neural machine translation ($k$NN-MT) has achieved state-of-the-art results in a variety of MT tasks. One significant shortcoming of $k$NN-MT lies in its inefficiency in identifying the $k$ nearest neighbors of the query representation from the entire datastore, which is prohibitively time-intensive when the datastore size is large. In this work, we propose \textbf{Faster $k$NN-MT} to address this issue. The core idea of Faster $k$NN-MT is to use a hierarchical clustering strategy to approximate the distance between the query and a data point in the datastore, which is decomposed into two parts: the distance between the query and the center of the cluster that the data point belongs to, and the distance between the data point and the cluster center. We propose practical ways to compute these two parts in a significantly faster manner. Through extensive experiments on different MT benchmarks, we show that \textbf{Faster $k$NN-MT} is faster than Fast $k$NN-MT \citep{meng2021fast} and only slightly (1.2 times) slower than its vanilla counterpart while preserving model performance as $k$NN-MT. Faster $k$NN-MT enables the deployment of $k$NN-MT models on real-world MT services.