Abstract:Packing, initially utilized in the pre-training phase, is an optimization technique designed to maximize hardware resource efficiency by combining different training sequences to fit the model's maximum input length. Although it has demonstrated effectiveness during pre-training, there remains a lack of comprehensive analysis for the supervised fine-tuning (SFT) stage on the following points: (1) whether packing can effectively enhance training efficiency while maintaining performance, (2) the suitable size of the model and dataset for fine-tuning with the packing method, and (3) whether packing unrelated or related training samples might cause the model to either excessively disregard or over-rely on the context. In this paper, we perform extensive comparisons between SFT methods using padding and packing, covering SFT datasets ranging from 69K to 1.2M and models from 8B to 70B. This provides the first comprehensive analysis of the advantages and limitations of packing versus padding, as well as practical considerations for implementing packing in various training scenarios. Our analysis covers various benchmarks, including knowledge, reasoning, and coding, as well as GPT-based evaluations, time efficiency, and other fine-tuning parameters. We also open-source our code for fine-tuning and evaluation and provide checkpoints fine-tuned on datasets of different sizes, aiming to advance future research on packing methods. Code is available at: https://github.com/ShuheWang1998/Packing-Analysis?tab=readme-ov-file.
Abstract:Due to the lack of a large collection of high-quality labeled sentence pairs with textual similarity scores, existing approaches for Semantic Textual Similarity (STS) mostly rely on unsupervised techniques or training signals that are only partially correlated with textual similarity, e.g., NLI-based datasets. To tackle this issue, in this paper, we propose the strategy of measuring text similarity via GPT annotated data (Sim-GPT for short). The core idea of Sim-GPT is to generate data with STS labels using GPT-4, based on which an STS model is trained. Sim-GPT framework utilizes LLMs to provide a substantial amount of reliable annotated data filling the gap of the lack of training signals for STS. Sim-GPT is trained on a one-time generated dataset using BERT or RoBERTa as the backbone, which offers long-term savings in cost and speed compared to repeatedly invoking LLMs for each sentence pair. Trained on the examples from GPT-4 (371K), Sim-GPT yields SOTA performances on the widely-used seven STS benchmarks: +0.99 over supervised-SimCSE, and +0.42 over the current SOTA PromCSE model. To encourage further advancements of the field, we release both models and the 371K annotated examples from GPT-4. Code, models and annotated data are available at: https://github.com/ShuheWang1998/Sim-GPT.
Abstract:A standard paradigm for sentiment analysis is to rely on a singular LLM and makes the decision in a single round under the framework of in-context learning. This framework suffers the key disadvantage that the single-turn output generated by a single LLM might not deliver the perfect decision, just as humans sometimes need multiple attempts to get things right. This is especially true for the task of sentiment analysis where deep reasoning is required to address the complex linguistic phenomenon (e.g., clause composition, irony, etc) in the input. To address this issue, this paper introduces a multi-LLM negotiation framework for sentiment analysis. The framework consists of a reasoning-infused generator to provide decision along with rationale, a explanation-deriving discriminator to evaluate the credibility of the generator. The generator and the discriminator iterate until a consensus is reached. The proposed framework naturally addressed the aforementioned challenge, as we are able to take the complementary abilities of two LLMs, have them use rationale to persuade each other for correction. Experiments on a wide range of sentiment analysis benchmarks (SST-2, Movie Review, Twitter, yelp, amazon, IMDB) demonstrate the effectiveness of proposed approach: it consistently yields better performances than the ICL baseline across all benchmarks, and even superior performances to supervised baselines on the Twitter and movie review datasets.
Abstract:This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
Abstract:Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines. In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors: (1) token limit in the prompt does not allow for the full utilization of the supervised datasets; (2) mismatch between the generation nature of ChatGPT and NLP tasks; (3) intrinsic pitfalls of LLMs models, e.g., hallucination, overly focus on certain keywords, etc. In this work, we propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks. Our proposed modules include (1) a one-input-multiple-prompts strategy that employs multiple prompts for one input to accommodate more demonstrations; (2) using fine-tuned models for better demonstration retrieval; (3) transforming tasks to formats that are more tailored to the generation nature; (4) employing reasoning strategies that are tailored to addressing the task-specific complexity; (5) the self-verification strategy to address the hallucination issue of LLMs; (6) the paraphrase strategy to improve the robustness of model predictions. We conduct experiments on 21 datasets of 10 representative NLP tasks, including question answering, commonsense reasoning, natural language inference, sentiment analysis, named entity recognition, entity-relation extraction, event extraction, dependency parsing, semantic role labeling, and part-of-speech tagging. Using the proposed assemble of techniques, we are able to significantly boost the performance of ChatGPT on the selected NLP tasks, achieving performances comparable to or better than supervised baselines, or even existing SOTA performances.
Abstract:Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited.
Abstract:To better handle long-tail cases in the sequence labeling (SL) task, in this work, we introduce graph neural networks sequence labeling (GNN-SL), which augments the vanilla SL model output with similar tagging examples retrieved from the whole training set. Since not all the retrieved tagging examples benefit the model prediction, we construct a heterogeneous graph, and leverage graph neural networks (GNNs) to transfer information between the retrieved tagging examples and the input word sequence. The augmented node which aggregates information from neighbors is used to do prediction. This strategy enables the model to directly acquire similar tagging examples and improves the general quality of predictions. We conduct a variety of experiments on three typical sequence labeling tasks: Named Entity Recognition (NER), Part of Speech Tagging (POS), and Chinese Word Segmentation (CWS) to show the significant performance of our GNN-SL. Notably, GNN-SL achieves SOTA results of 96.9 (+0.2) on PKU, 98.3 (+0.4) on CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2) on AS for the CWS task, and results comparable to SOTA performances on NER datasets, and POS datasets.
Abstract:Inspired by recent advances in retrieval augmented methods in NLP~\citep{khandelwal2019generalization,khandelwal2020nearest,meng2021gnn}, in this paper, we introduce a $k$ nearest neighbor NER ($k$NN-NER) framework, which augments the distribution of entity labels by assigning $k$ nearest neighbors retrieved from the training set. This strategy makes the model more capable of handling long-tail cases, along with better few-shot learning abilities. $k$NN-NER requires no additional operation during the training phase, and by interpolating $k$ nearest neighbors search into the vanilla NER model, $k$NN-NER consistently outperforms its vanilla counterparts: we achieve a new state-of-the-art F1-score of 72.03 (+1.25) on the Chinese Weibo dataset and improved results on a variety of widely used NER benchmarks. Additionally, we show that $k$NN-NER can achieve comparable results to the vanilla NER model with 40\% less amount of training data. Code available at \url{https://github.com/ShannonAI/KNN-NER}.
Abstract:$k$NN based neural machine translation ($k$NN-MT) has achieved state-of-the-art results in a variety of MT tasks. One significant shortcoming of $k$NN-MT lies in its inefficiency in identifying the $k$ nearest neighbors of the query representation from the entire datastore, which is prohibitively time-intensive when the datastore size is large. In this work, we propose \textbf{Faster $k$NN-MT} to address this issue. The core idea of Faster $k$NN-MT is to use a hierarchical clustering strategy to approximate the distance between the query and a data point in the datastore, which is decomposed into two parts: the distance between the query and the center of the cluster that the data point belongs to, and the distance between the data point and the cluster center. We propose practical ways to compute these two parts in a significantly faster manner. Through extensive experiments on different MT benchmarks, we show that \textbf{Faster $k$NN-MT} is faster than Fast $k$NN-MT \citep{meng2021fast} and only slightly (1.2 times) slower than its vanilla counterpart while preserving model performance as $k$NN-MT. Faster $k$NN-MT enables the deployment of $k$NN-MT models on real-world MT services.
Abstract:In order to better simulate the real human conversation process, models need to generate dialogue utterances based on not only preceding textual contexts but also visual contexts. However, with the development of multi-modal dialogue learning, the dataset scale gradually becomes a bottleneck. In this report, we release OpenViDial 2.0, a larger-scale open-domain multi-modal dialogue dataset compared to the previous version OpenViDial 1.0. OpenViDial 2.0 contains a total number of 5.6 million dialogue turns extracted from either movies or TV series from different resources, and each dialogue turn is paired with its corresponding visual context. We hope this large-scale dataset can help facilitate future researches on open-domain multi-modal dialog generation, e.g., multi-modal pretraining for dialogue generation.