Abstract:Autoregressive and diffusion models drive the recent breakthroughs on text-to-image generation. Despite their huge success of generating high-realistic images, a common shortcoming of these models is their high inference latency - autoregressive models run more than a thousand times successively to produce image tokens and diffusion models convert Gaussian noise into images with many hundreds of denoising steps. In this work, we explore non-autoregressive text-to-image models that efficiently generate hundreds of image tokens in parallel. We develop many model variations with different learning and inference strategies, initialized text encoders, etc. Compared with autoregressive baselines that needs to run one thousand times, our model only runs 16 times to generate images of competitive quality with an order of magnitude lower inference latency. Our non-autoregressive model with 346M parameters generates an image of 256$\times$256 with about one second on one V100 GPU.
Abstract:This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.