Abstract:Surround-view depth estimation is a crucial task aims to acquire the depth maps of the surrounding views. It has many applications in real world scenarios such as autonomous driving, AR/VR and 3D reconstruction, etc. However, given that most of the data in the autonomous driving dataset is collected in daytime scenarios, this leads to poor depth model performance in the face of out-of-distribution(OoD) data. While some works try to improve the robustness of depth model under OoD data, these methods either require additional training data or lake generalizability. In this report, we introduce the DINO-SD, a novel surround-view depth estimation model. Our DINO-SD does not need additional data and has strong robustness. Our DINO-SD get the best performance in the track4 of ICRA 2024 RoboDepth Challenge.
Abstract:In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies that can withstand and adapt to these real-world variabilities. Focusing on four pivotal tasks -- BEV detection, map segmentation, semantic occupancy prediction, and multi-view depth estimation -- the competition laid down a gauntlet to innovate and enhance system resilience against typical and atypical disturbances. This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries, resulting in nearly one thousand submissions evaluated through our servers. The competition culminated in 15 top-performing solutions, which introduced a range of innovative approaches including advanced data augmentation, multi-sensor fusion, self-supervised learning for error correction, and new algorithmic strategies to enhance sensor robustness. These contributions significantly advanced the state of the art, particularly in handling sensor inconsistencies and environmental variability. Participants, through collaborative efforts, pushed the boundaries of current technologies, showcasing their potential in real-world scenarios. Extensive evaluations and analyses provided insights into the effectiveness of these solutions, highlighting key trends and successful strategies for improving the resilience of driving perception systems. This challenge has set a new benchmark in the field, providing a rich repository of techniques expected to guide future research in this field.
Abstract:The Dynamic Vision Sensor (DVS) is an innovative technology that efficiently captures and encodes visual information in an event-driven manner. By combining it with event-driven neuromorphic processing, the sparsity in DVS camera output can result in high energy efficiency. However, similar to many embedded systems, the off-chip communication between the camera and processor presents a bottleneck in terms of power consumption. Inspired by the predictive coding model and expectation suppression phenomenon found in human brain, we propose a temporal attention mechanism to throttle the camera output and pay attention to it only when the visual events cannot be well predicted. The predictive attention not only reduces power consumption in the sensor-processor interface but also effectively decreases the computational workload by filtering out noisy events. We demonstrate that the predictive attention can reduce 46.7% of data communication between the camera and the processor and reduce 43.8% computation activities in the processor.
Abstract:Deep neural networks (DNNs) are susceptible to adversarial examples, which introduce imperceptible perturbations to benign samples, deceiving DNN predictions. While some attack methods excel in the white-box setting, they often struggle in the black-box scenario, particularly against models fortified with defense mechanisms. Various techniques have emerged to enhance the transferability of adversarial attacks for the black-box scenario. Among these, input transformation-based attacks have demonstrated their effectiveness. In this paper, we explore the potential of leveraging data generated by Stable Diffusion to boost adversarial transferability. This approach draws inspiration from recent research that harnessed synthetic data generated by Stable Diffusion to enhance model generalization. In particular, previous work has highlighted the correlation between the presence of both real and synthetic data and improved model generalization. Building upon this insight, we introduce a novel attack method called Stable Diffusion Attack Method (SDAM), which incorporates samples generated by Stable Diffusion to augment input images. Furthermore, we propose a fast variant of SDAM to reduce computational overhead while preserving high adversarial transferability. Our extensive experimental results demonstrate that our method outperforms state-of-the-art baselines by a substantial margin. Moreover, our approach is compatible with existing transfer-based attacks to further enhance adversarial transferability.
Abstract:Fast and accurate path planning is important for ground robots to achieve safe and efficient autonomous navigation in unstructured outdoor environments. However, most existing methods exploiting either 2D or 2.5D maps struggle to balance the efficiency and safety for ground robots navigating in such challenging scenarios. In this paper, we propose a novel hybrid map representation by fusing a 2D grid and a 2.5D digital elevation map. Based on it, a novel path planning method is proposed, which considers the robot poses during traversability estimation. By doing so, our method explicitly takes safety as a planning constraint enabling robots to navigate unstructured environments smoothly.The proposed approach has been evaluated on both simulated datasets and a real robot platform. The experimental results demonstrate the efficiency and effectiveness of the proposed method. Compared to state-of-the-art baseline methods, the proposed approach consistently generates safer and easier paths for the robot in different unstructured outdoor environments. The implementation of our method is publicly available at https://github.com/nubot-nudt/T-Hybrid-planner.
Abstract:Reversible data hiding (RDH) is one special type of information hiding, by which the host sequence as well as the embedded data can be both restored from the marked sequence without loss. Beside media annotation and integrity authentication, recently some scholars begin to apply RDH in many other fields innovatively. In this paper, we summarize these emerging applications, including steganography, adversarial example, visual transformation, image processing, and give out the general frameworks to make these operations reversible. As far as we are concerned, this is the first paper to summarize the extended applications of RDH.
Abstract:Deep Neural Networks (DNNs) have recently led to significant improvements in many fields. However, DNNs are vulnerable to adversarial examples which are samples with imperceptible perturbations while dramatically misleading the DNNs. Adversarial attacks can be used to evaluate the robustness of deep learning models before they are deployed. Unfortunately, most of existing adversarial attacks can only fool a black-box model with a low success rate. To improve the success rates for black-box adversarial attacks, we proposed an iterated adversarial attack against an ensemble of image classifiers. With this method, we won the 5th place in CAAD 2018 Targeted Adversarial Attack competition.
Abstract:Deep Neural Networks have recently led to significant improvement in many fields such as image classification and speech recognition. However, these machine learning models are vulnerable to adversarial examples which can mislead machine learning classifiers to give incorrect classifications. In this paper, we take advantage of reversible data hiding to construct reversible adversarial examples which are still misclassified by Deep Neural Networks. Furthermore, the proposed method can recover original images from reversible adversarial examples with no distortion.
Abstract:Deep Neural Networks (DNNs) have recently led to significant improvements in many fields. However, DNNs are vulnerable to adversarial examples which are samples with imperceptible perturbations while dramatically misleading the DNNs. Moreover, adversarial examples can be used to perform an attack on various kinds of DNN based systems, even if the adversary has no access to the underlying model. Many defense methods have been proposed, such as obfuscating gradients of the networks or detecting adversarial examples. However it is proved out that these defense methods are not effective or cannot resist secondary adversarial attacks. In this paper, we point out that steganalysis can be applied to adversarial examples detection, and propose a method to enhance steganalysis features by estimating the probability of modifications caused by adversarial attacks. Experimental results show that the proposed method can accurately detect adversarial examples. Moreover, secondary adversarial attacks cannot be directly performed to our method because our method is not based on a neural network but based on high-dimensional artificial features and FLD (Fisher Linear Discriminant) ensemble.
Abstract:Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabeled nonspeech audio: (i) noise and translations in time do not change the underlying sound category, (ii) a mixture of two sound events inherits the categories of the constituents, and (iii) the categories of events in close temporal proximity are likely to be the same or related. Without labels to ground them, these constraints are incompatible with classification loss functions. However, they may still be leveraged to identify geometric inequalities needed for triplet loss-based training of convolutional neural networks. The result is low-dimensional embeddings of the input spectrograms that recover 41% and 84% of the performance of their fully-supervised counterparts when applied to downstream query-by-example sound retrieval and sound event classification tasks, respectively. Moreover, in limited-supervision settings, our unsupervised embeddings double the state-of-the-art classification performance.