Abstract:Event cameras offer unparalleled advantages for real-time perception in dynamic environments, thanks to their microsecond-level temporal resolution and asynchronous operation. Existing event-based object detection methods, however, are limited by fixed-frequency paradigms and fail to fully exploit the high-temporal resolution and adaptability of event cameras. To address these limitations, we propose FlexEvent, a novel event camera object detection framework that enables detection at arbitrary frequencies. Our approach consists of two key components: FlexFuser, an adaptive event-frame fusion module that integrates high-frequency event data with rich semantic information from RGB frames, and FAL, a frequency-adaptive learning mechanism that generates frequency-adjusted labels to enhance model generalization across varying operational frequencies. This combination allows our method to detect objects with high accuracy in both fast-moving and static scenarios, while adapting to dynamic environments. Extensive experiments on large-scale event camera datasets demonstrate that our approach surpasses state-of-the-art methods, achieving significant improvements in both standard and high-frequency settings. Notably, our method maintains robust performance when scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving its effectiveness in extreme conditions. Our framework sets a new benchmark for event-based object detection and paves the way for more adaptable, real-time vision systems.
Abstract:Abstract representations of 3D scenes are essential in computer vision, supporting tasks like mapping, localization, and surface reconstruction. Line segments are commonly used to capture scene structure, but existing 3D reconstruction methods often face limitations, either from instability in 2D projections or noise in direct 3D data. This paper introduces LineGS, a method that integrates geometry-guided 3D line reconstruction with a 3D Gaussian splatting model to improve accuracy. By leveraging Gaussian point densities along scene edges, LineGS refines initial line segments, aligning them more closely with the scene's geometric features. Experiments confirm that this approach enhances the fit to 3D structures, providing an efficient and reliable abstract representation of 3D scenes.
Abstract:The rise of Extended Reality (XR) requires efficient streaming of 3D online worlds, challenging current 3DGS representations to adapt to bandwidth-constrained environments. This paper proposes LapisGS, a layered 3DGS that supports adaptive streaming and progressive rendering. Our method constructs a layered structure for cumulative representation, incorporates dynamic opacity optimization to maintain visual fidelity, and utilizes occupancy maps to efficiently manage Gaussian splats. This proposed model offers a progressive representation supporting a continuous rendering quality adapted for bandwidth-aware streaming. Extensive experiments validate the effectiveness of our approach in balancing visual fidelity with the compactness of the model, with up to 50.71% improvement in SSIM, 286.53% improvement in LPIPS, and 318.41% reduction in model size, and shows its potential for bandwidth-adapted 3D streaming and rendering applications.
Abstract:In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies that can withstand and adapt to these real-world variabilities. Focusing on four pivotal tasks -- BEV detection, map segmentation, semantic occupancy prediction, and multi-view depth estimation -- the competition laid down a gauntlet to innovate and enhance system resilience against typical and atypical disturbances. This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries, resulting in nearly one thousand submissions evaluated through our servers. The competition culminated in 15 top-performing solutions, which introduced a range of innovative approaches including advanced data augmentation, multi-sensor fusion, self-supervised learning for error correction, and new algorithmic strategies to enhance sensor robustness. These contributions significantly advanced the state of the art, particularly in handling sensor inconsistencies and environmental variability. Participants, through collaborative efforts, pushed the boundaries of current technologies, showcasing their potential in real-world scenarios. Extensive evaluations and analyses provided insights into the effectiveness of these solutions, highlighting key trends and successful strategies for improving the resilience of driving perception systems. This challenge has set a new benchmark in the field, providing a rich repository of techniques expected to guide future research in this field.
Abstract:Event-based semantic segmentation (ESS) is a fundamental yet challenging task for event camera sensing. The difficulties in interpreting and annotating event data limit its scalability. While domain adaptation from images to event data can help to mitigate this issue, there exist data representational differences that require additional effort to resolve. In this work, for the first time, we synergize information from image, text, and event-data domains and introduce OpenESS to enable scalable ESS in an open-world, annotation-efficient manner. We achieve this goal by transferring the semantically rich CLIP knowledge from image-text pairs to event streams. To pursue better cross-modality adaptation, we propose a frame-to-event contrastive distillation and a text-to-event semantic consistency regularization. Experimental results on popular ESS benchmarks showed our approach outperforms existing methods. Notably, we achieve 53.93% and 43.31% mIoU on DDD17 and DSEC-Semantic without using either event or frame labels.
Abstract:Efficient data utilization is crucial for advancing 3D scene understanding in autonomous driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully supervised methods. Addressing this, our study extends into semi-supervised learning for LiDAR semantic segmentation, leveraging the intrinsic spatial priors of driving scenes and multi-sensor complements to augment the efficacy of unlabeled datasets. We introduce LaserMix++, an evolved framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to further assist data-efficient learning. Our framework is tailored to enhance 3D scene consistency regularization by incorporating multi-modality, including 1) multi-modal LaserMix operation for fine-grained cross-sensor interactions; 2) camera-to-LiDAR feature distillation that enhances LiDAR feature learning; and 3) language-driven knowledge guidance generating auxiliary supervisions using open-vocabulary models. The versatility of LaserMix++ enables applications across LiDAR representations, establishing it as a universally applicable solution. Our framework is rigorously validated through theoretical analysis and extensive experiments on popular driving perception datasets. Results demonstrate that LaserMix++ markedly outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations and significantly improving the supervised-only baselines. This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
Abstract:In this study, we delve into Federated Reinforcement Learning (FedRL) in the context of value-based agents operating across diverse Markov Decision Processes (MDPs). Existing FedRL methods typically aggregate agents' learning by averaging the value functions across them to improve their performance. However, this aggregation strategy is suboptimal in heterogeneous environments where agents converge to diverse optimal value functions. To address this problem, we introduce the Convergence-AwarE SAmpling with scReening (CAESAR) aggregation scheme designed to enhance the learning of individual agents across varied MDPs. CAESAR is an aggregation strategy used by the server that combines convergence-aware sampling with a screening mechanism. By exploiting the fact that agents learning in identical MDPs are converging to the same optimal value function, CAESAR enables the selective assimilation of knowledge from more proficient counterparts, thereby significantly enhancing the overall learning efficiency. We empirically validate our hypothesis and demonstrate the effectiveness of CAESAR in enhancing the learning efficiency of agents, using both a custom-built GridWorld environment and the classical FrozenLake-v1 task, each presenting varying levels of environmental heterogeneity.
Abstract:Depth estimation from monocular images is pivotal for real-world visual perception systems. While current learning-based depth estimation models train and test on meticulously curated data, they often overlook out-of-distribution (OoD) situations. Yet, in practical settings -- especially safety-critical ones like autonomous driving -- common corruptions can arise. Addressing this oversight, we introduce a comprehensive robustness test suite, RoboDepth, encompassing 18 corruptions spanning three categories: i) weather and lighting conditions; ii) sensor failures and movement; and iii) data processing anomalies. We subsequently benchmark 42 depth estimation models across indoor and outdoor scenes to assess their resilience to these corruptions. Our findings underscore that, in the absence of a dedicated robustness evaluation framework, many leading depth estimation models may be susceptible to typical corruptions. We delve into design considerations for crafting more robust depth estimation models, touching upon pre-training, augmentation, modality, model capacity, and learning paradigms. We anticipate our benchmark will establish a foundational platform for advancing robust OoD depth estimation.
Abstract:With projections of ageing populations and increasing rates of dementia, there is need for professional caregivers. Assistive robots have been proposed as a solution to this, as they can assist people both physically and socially. However, caregivers often need to use acts of deception (such as misdirection or white lies) in order to ensure necessary care is provided while limiting negative impacts on the cared-for such as emotional distress or loss of dignity. We discuss such use of deception, and contextualise their use within robotics.
Abstract:Large language models (LLMs) are increasingly capable and prevalent, and can be used to produce creative content. The quality of content is influenced by the prompt used, with more specific prompts that incorporate examples generally producing better results. On from this, it could be seen that using instructions written for crowdsourcing tasks (that are specific and include examples to guide workers) could prove effective LLM prompts. To explore this, we used a previous crowdsourcing pipeline that gave examples to people to help them generate a collectively diverse corpus of motivational messages. We then used this same pipeline to generate messages using GPT-4, and compared the collective diversity of messages from: (1) crowd-writers, (2) GPT-4 using the pipeline, and (3 & 4) two baseline GPT-4 prompts. We found that the LLM prompts using the crowdsourcing pipeline caused GPT-4 to produce more diverse messages than the two baseline prompts. We also discuss implications from messages generated by both human writers and LLMs.