Abstract representations of 3D scenes are essential in computer vision, supporting tasks like mapping, localization, and surface reconstruction. Line segments are commonly used to capture scene structure, but existing 3D reconstruction methods often face limitations, either from instability in 2D projections or noise in direct 3D data. This paper introduces LineGS, a method that integrates geometry-guided 3D line reconstruction with a 3D Gaussian splatting model to improve accuracy. By leveraging Gaussian point densities along scene edges, LineGS refines initial line segments, aligning them more closely with the scene's geometric features. Experiments confirm that this approach enhances the fit to 3D structures, providing an efficient and reliable abstract representation of 3D scenes.