Abstract:Large language models exhibit complementary reasoning errors: on the same instance, one model may succeed with a particular decomposition while another fails. We propose Collaborative Reasoning (CORE), a training-time collaboration framework that converts peer success into a learning signal via a cross-teaching protocol. Each problem is solved in two stages: a cold round of independent sampling, followed by a contexted rescue round in which models that failed receive hint extracted from a successful peer. CORE optimizes a combined reward that balances (i) correctness, (ii) a lightweight DPP-inspired diversity term to reduce error overlap, and (iii) an explicit rescue bonus for successful recovery. We evaluate CORE across four standard reasoning datasets GSM8K, MATH, AIME, and GPQA. With only 1,000 training examples, a pair of small open source models (3B+4B) reaches Pass@2 of 99.54% on GSM8K and 92.08% on MATH, compared to 82.50% and 74.82% for single-model training. On harder datasets, the 3B+4B pair reaches Pass@2 of 77.34% on GPQA (trained on 348 examples) and 79.65% on AIME (trained on 792 examples), using a training-time budget of at most 1536 context tokens and 3072 generated tokens. Overall, these results show that training-time collaboration can reliably convert model complementarity into large gains without scaling model size.
Abstract:Small language models (SLMs) struggle with complex reasoning because exploration is expensive under tight compute budgets. We introduce Semantic Diversity-Exploration-Exploitation (SD-E$^2$), a reinforcement learning framework that makes exploration explicit by optimizing semantic diversity in generated reasoning trajectories. Using a frozen sentence-embedding model, SD-E$^2$ assigns a diversity reward that captures (i) the coverage of semantically distinct solution strategies and (ii) their average pairwise dissimilarity in embedding space, rather than surface-form novelty. This diversity reward is combined with outcome correctness and solution efficiency in a z-score-normalized multi-objective objective that stabilizes training. On GSM8K, SD-E$^2$ surpasses the base Qwen2.5-3B-Instruct and strong GRPO baselines (GRPO-CFL and GRPO-CFEE) by +27.4, +5.2, and +1.5 percentage points, respectively, while discovering on average 9.8 semantically distinct strategies per question. We further improve MedMCQA to 49.64% versus 38.37% for the base model and show gains on the harder AIME benchmark (1983-2025), reaching 13.28% versus 6.74% for the base. These results indicate that rewarding semantic novelty yields a more compute-efficient exploration-exploitation signal for training reasoning-capable SLMs. By introducing cognitive adaptation-adjusting the reasoning process structure rather than per-token computation-SD-E$^2$ offers a complementary path to efficiency gains in resource-constrained models.
Abstract:Invisible watermarking has become a critical mechanism for authenticating AI-generated image content, with major platforms deploying watermarking schemes at scale. However, evaluating the vulnerability of these schemes against sophisticated removal attacks remains essential to assess their reliability and guide robust design. In this work, we expose a fundamental vulnerability in invisible watermarks by reformulating watermark removal as a view synthesis problem. Our key insight is that generating a perceptually consistent alternative view of the same semantic content, akin to re-observing a scene from a shifted perspective, naturally removes the embedded watermark while preserving visual fidelity. This reveals a critical gap: watermarks robust to pixel-space and frequency-domain attacks remain vulnerable to semantic-preserving viewpoint transformations. We introduce a zero-shot diffusion-based framework that applies controlled geometric transformations in latent space, augmented with view-guided correspondence attention to maintain structural consistency during reconstruction. Operating on frozen pre-trained models without detector access or watermark knowledge, our method achieves state-of-the-art watermark suppression across 15 watermarking methods--outperforming 14 baseline attacks while maintaining superior perceptual quality across multiple datasets.
Abstract:While Chain-of-Thought empowers Large Vision-Language Models with multi-step reasoning, explicit textual rationales suffer from an information bandwidth bottleneck, where continuous visual details are discarded during discrete tokenization. Recent latent reasoning methods attempt to address this challenge, but often fall prey to premature semantic collapse due to rigid autoregressive objectives. In this paper, we propose Laser, a novel paradigm that reformulates visual deduction via Dynamic Windowed Alignment Learning (DWAL). Instead of forcing a point-wise prediction, Laser aligns the latent state with a dynamic validity window of future semantics. This mechanism enforces a "Forest-before-Trees" cognitive hierarchy, enabling the model to maintain a probabilistic superposition of global features before narrowing down to local details. Crucially, Laser maintains interpretability via decodable trajectories while stabilizing unconstrained learning via Self-Refined Superposition. Extensive experiments on 6 benchmarks demonstrate that Laser achieves state-of-the-art performance among latent reasoning methods, surpassing the strong baseline Monet by 5.03% on average. Notably, it achieves these gains with extreme efficiency, reducing inference tokens by more than 97%, while demonstrating robust generalization to out-of-distribution domains.




Abstract:Generative models can synthesize highly realistic content, so-called deepfakes, that are already being misused at scale to undermine digital media authenticity. Current deepfake detection methods are unreliable for two reasons: (i) distinguishing inauthentic content post-hoc is often impossible (e.g., with memorized samples), leading to an unbounded false positive rate (FPR); and (ii) detection lacks robustness, as adversaries can adapt to known detectors with near-perfect accuracy using minimal computational resources. To address these limitations, we propose a resynthesis framework to determine if a sample is authentic or if its authenticity can be plausibly denied. We make two key contributions focusing on the high-precision, low-recall setting against efficient (i.e., compute-restricted) adversaries. First, we demonstrate that our calibrated resynthesis method is the most reliable approach for verifying authentic samples while maintaining controllable, low FPRs. Second, we show that our method achieves adversarial robustness against efficient adversaries, whereas prior methods are easily evaded under identical compute budgets. Our approach supports multiple modalities and leverages state-of-the-art inversion techniques.
Abstract:Content watermarking is an important tool for the authentication and copyright protection of digital media. However, it is unclear whether existing watermarks are robust against adversarial attacks. We present the winning solution to the NeurIPS 2024 Erasing the Invisible challenge, which stress-tests watermark robustness under varying degrees of adversary knowledge. The challenge consisted of two tracks: a black-box and beige-box track, depending on whether the adversary knows which watermarking method was used by the provider. For the beige-box track, we leverage an adaptive VAE-based evasion attack, with a test-time optimization and color-contrast restoration in CIELAB space to preserve the image's quality. For the black-box track, we first cluster images based on their artifacts in the spatial or frequency-domain. Then, we apply image-to-image diffusion models with controlled noise injection and semantic priors from ChatGPT-generated captions to each cluster with optimized parameter settings. Empirical evaluations demonstrate that our method successfully achieves near-perfect watermark removal (95.7%) with negligible impact on the residual image's quality. We hope that our attacks inspire the development of more robust image watermarking methods.
Abstract:Watermarking offers a promising solution for GenAI providers to establish the provenance of their generated content. A watermark is a hidden signal embedded in the generated content, whose presence can later be verified using a secret watermarking key. A threat to GenAI providers are \emph{watermark stealing} attacks, where users forge a watermark into content that was \emph{not} generated by the provider's models without access to the secret key, e.g., to falsely accuse the provider. Stealing attacks collect \emph{harmless} watermarked samples from the provider's model and aim to maximize the expected success rate of generating \emph{harmful} watermarked samples. Our work focuses on mitigating stealing attacks while treating the underlying watermark as a black-box. Our contributions are: (i) Proposing a multi-key extension to mitigate stealing attacks that can be applied post-hoc to any watermarking method across any modality. (ii) We provide theoretical guarantees and demonstrate empirically that our method makes forging substantially less effective across multiple datasets, and (iii) we formally define the threat of watermark forging as the task of generating harmful, watermarked content and model this threat via security games.




Abstract:We present MaskMark, a simple, efficient and flexible framework for image watermarking. MaskMark has two variants: MaskMark-D, which supports global watermark embedding, watermark localization, and local watermark extraction for applications such as tamper detection, and MaskMark-ED, which focuses on local watermark embedding and extraction with enhanced robustness in small regions, enabling localized image protection. Built upon the classical Encoder- Distortion-Decoder training paradigm, MaskMark-D introduces a simple masking mechanism during the decoding stage to support both global and local watermark extraction. A mask is applied to the watermarked image before extraction, allowing the decoder to focus on selected regions and learn local extraction. A localization module is also integrated into the decoder to identify watermark regions during inference, reducing interference from irrelevant content and improving accuracy. MaskMark-ED extends this design by incorporating the mask into the encoding stage as well, guiding the encoder to embed the watermark in designated local regions for enhanced robustness. Comprehensive experiments show that MaskMark achieves state-of-the-art performance in global watermark extraction, local watermark extraction, watermark localization, and multi-watermark embedding. It outperforms all existing baselines, including the recent leading model WAM for local watermarking, while preserving high visual quality of the watermarked images. MaskMark is also flexible, by adjusting the distortion layer, it can adapt to different robustness requirements with just a few steps of fine-tuning. Moreover, our approach is efficient and easy to optimize, requiring only 20 hours on a single A6000 GPU with just 1/15 the computational cost of WAM.




Abstract:Large Language Models (LLMs) can be \emph{misused} to spread online spam and misinformation. Content watermarking deters misuse by hiding a message in model-generated outputs, enabling their detection using a secret watermarking key. Robustness is a core security property, stating that evading detection requires (significant) degradation of the content's quality. Many LLM watermarking methods have been proposed, but robustness is tested only against \emph{non-adaptive} attackers who lack knowledge of the watermarking method and can find only suboptimal attacks. We formulate the robustness of LLM watermarking as an objective function and propose preference-based optimization to tune \emph{adaptive} attacks against the specific watermarking method. Our evaluation shows that (i) adaptive attacks substantially outperform non-adaptive baselines. (ii) Even in a non-adaptive setting, adaptive attacks optimized against a few known watermarks remain highly effective when tested against other unseen watermarks, and (iii) optimization-based attacks are practical and require less than seven GPU hours. Our findings underscore the need to test robustness against adaptive attackers.




Abstract:Web-scraped datasets are vulnerable to data poisoning, which can be used for backdooring deep image classifiers during training. Since training on large datasets is expensive, a model is trained once and re-used many times. Unlike adversarial examples, backdoor attacks often target specific classes rather than any class learned by the model. One might expect that targeting many classes through a naive composition of attacks vastly increases the number of poison samples. We show this is not necessarily true and more efficient, universal data poisoning attacks exist that allow controlling misclassifications from any source class into any target class with a small increase in poison samples. Our idea is to generate triggers with salient characteristics that the model can learn. The triggers we craft exploit a phenomenon we call inter-class poison transferability, where learning a trigger from one class makes the model more vulnerable to learning triggers for other classes. We demonstrate the effectiveness and robustness of our universal backdoor attacks by controlling models with up to 6,000 classes while poisoning only 0.15% of the training dataset.