Abstract:We study the problem of privacy-preserving $k$-means clustering in the horizontally federated setting. Existing federated approaches using secure computation, suffer from substantial overheads and do not offer output privacy. At the same time, differentially private (DP) $k$-means algorithms assume a trusted central curator and do not extend to federated settings. Naively combining the secure and DP solutions results in a protocol with impractical overhead. Instead, our work provides enhancements to both the DP and secure computation components, resulting in a design that is faster, more private, and more accurate than previous work. By utilizing the computational DP model, we design a lightweight, secure aggregation-based approach that achieves four orders of magnitude speed-up over state-of-the-art related work. Furthermore, we not only maintain the utility of the state-of-the-art in the central model of DP, but we improve the utility further by taking advantage of constrained clustering techniques.
Abstract:Adversarial examples are malicious inputs to machine learning models that trigger a misclassification. This type of attack has been studied for close to a decade, and we find that there is a lack of study and formalization of adversary knowledge when mounting attacks. This has yielded a complex space of attack research with hard-to-compare threat models and attacks. We focus on the image classification domain and provide a theoretical framework to study adversary knowledge inspired by work in order theory. We present an adversarial example game, inspired by cryptographic games, to standardize attacks. We survey recent attacks in the image classification domain and classify their adversary's knowledge in our framework. From this systematization, we compile results that both confirm existing beliefs about adversary knowledge, such as the potency of information about the attacked model as well as allow us to derive new conclusions on the difficulty associated with the white-box and transferable threat models, for example, that transferable attacks might not be as difficult as previously thought.
Abstract:Web-scraped datasets are vulnerable to data poisoning, which can be used for backdooring deep image classifiers during training. Since training on large datasets is expensive, a model is trained once and re-used many times. Unlike adversarial examples, backdoor attacks often target specific classes rather than any class learned by the model. One might expect that targeting many classes through a naive composition of attacks vastly increases the number of poison samples. We show this is not necessarily true and more efficient, universal data poisoning attacks exist that allow controlling misclassifications from any source class into any target class with a small increase in poison samples. Our idea is to generate triggers with salient characteristics that the model can learn. The triggers we craft exploit a phenomenon we call inter-class poison transferability, where learning a trigger from one class makes the model more vulnerable to learning triggers for other classes. We demonstrate the effectiveness and robustness of our universal backdoor attacks by controlling models with up to 6,000 classes while poisoning only 0.15% of the training dataset.
Abstract:Untrustworthy users can misuse image generators to synthesize high-quality deepfakes and engage in online spam or disinformation campaigns. Watermarking deters misuse by marking generated content with a hidden message, enabling its detection using a secret watermarking key. A core security property of watermarking is robustness, which states that an attacker can only evade detection by substantially degrading image quality. Assessing robustness requires designing an adaptive attack for the specific watermarking algorithm. A challenge when evaluating watermarking algorithms and their (adaptive) attacks is to determine whether an adaptive attack is optimal, i.e., it is the best possible attack. We solve this problem by defining an objective function and then approach adaptive attacks as an optimization problem. The core idea of our adaptive attacks is to replicate secret watermarking keys locally by creating surrogate keys that are differentiable and can be used to optimize the attack's parameters. We demonstrate for Stable Diffusion models that such an attacker can break all five surveyed watermarking methods at negligible degradation in image quality. These findings emphasize the need for more rigorous robustness testing against adaptive, learnable attackers.
Abstract:Every major technical invention resurfaces the dual-use dilemma -- the new technology has the potential to be used for good as well as for harm. Generative AI (GenAI) techniques, such as large language models (LLMs) and diffusion models, have shown remarkable capabilities (e.g., in-context learning, code-completion, and text-to-image generation and editing). However, GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks. This paper reports the findings of a workshop held at Google (co-organized by Stanford University and the University of Wisconsin-Madison) on the dual-use dilemma posed by GenAI. This paper is not meant to be comprehensive, but is rather an attempt to synthesize some of the interesting findings from the workshop. We discuss short-term and long-term goals for the community on this topic. We hope this paper provides both a launching point for a discussion on this important topic as well as interesting problems that the research community can work to address.
Abstract:Recent years have witnessed success in AIGC (AI Generated Content). People can make use of a pre-trained diffusion model to generate images of high quality or freely modify existing pictures with only prompts in nature language. More excitingly, the emerging personalization techniques make it feasible to create specific-desired images with only a few images as references. However, this induces severe threats if such advanced techniques are misused by malicious users, such as spreading fake news or defaming individual reputations. Thus, it is necessary to regulate personalization models (i.e., concept censorship) for their development and advancement. In this paper, we focus on the personalization technique dubbed Textual Inversion (TI), which is becoming prevailing for its lightweight nature and excellent performance. TI crafts the word embedding that contains detailed information about a specific object. Users can easily download the word embedding from public websites like Civitai and add it to their own stable diffusion model without fine-tuning for personalization. To achieve the concept censorship of a TI model, we propose leveraging the backdoor technique for good by injecting backdoors into the Textual Inversion embeddings. Briefly, we select some sensitive words as triggers during the training of TI, which will be censored for normal use. In the subsequent generation stage, if the triggers are combined with personalized embeddings as final prompts, the model will output a pre-defined target image rather than images including the desired malicious concept. To demonstrate the effectiveness of our approach, we conduct extensive experiments on Stable Diffusion, a prevailing open-sourced text-to-image model. Our code, data, and results are available at https://concept-censorship.github.io.
Abstract:Machine Learning as a Service (MLaaS) is an increasingly popular design where a company with abundant computing resources trains a deep neural network and offers query access for tasks like image classification. The challenge with this design is that MLaaS requires the client to reveal their potentially sensitive queries to the company hosting the model. Multi-party computation (MPC) protects the client's data by allowing encrypted inferences. However, current approaches suffer prohibitively large inference times. The inference time bottleneck in MPC is the evaluation of non-linear layers such as ReLU activation functions. Motivated by the success of previous work co-designing machine learning and MPC aspects, we develop an activation function co-design. We replace all ReLUs with a polynomial approximation and evaluate them with single-round MPC protocols, which give state-of-the-art inference times in wide-area networks. Furthermore, to address the accuracy issues previously encountered with polynomial activations, we propose a novel training algorithm that gives accuracy competitive with plaintext models. Our evaluation shows between $4$ and $90\times$ speedups in inference time on large models with up to $23$ million parameters while maintaining competitive inference accuracy.
Abstract:Deep image classification models trained on large amounts of web-scraped data are vulnerable to data poisoning, a mechanism for backdooring models. Even a few poisoned samples seen during training can entirely undermine the model's integrity during inference. While it is known that poisoning more samples enhances an attack's effectiveness and robustness, it is unknown whether poisoning too many samples weakens an attack by making it more detectable. We observe a fundamental detectability/robustness trade-off in data poisoning attacks: Poisoning too few samples renders an attack ineffective and not robust, but poisoning too many samples makes it detectable. This raises the bar for data poisoning attackers who have to balance this trade-off to remain robust and undetectable. Our work proposes two defenses designed to (i) detect and (ii) repair poisoned models as a post-processing step after training using a limited amount of trusted image-label pairs. We show that our defenses mitigate all surveyed attacks and outperform existing defenses using less trusted data to repair a model. Our defense scales to joint vision-language models, such as CLIP, and interestingly, we find that attacks on larger models are more easily detectable but also more robust than those on smaller models. Lastly, we propose two adaptive attacks demonstrating that while our work raises the bar for data poisoning attacks, it cannot mitigate all forms of backdooring.
Abstract:Deepfakes refer to content synthesized using deep generators, which, when \emph{misused}, have the potential to erode trust in digital media. Synthesizing high-quality deepfakes requires access to large and complex generators only few entities can train and provide. The threat are malicious users that exploit access to the provided model and generate harmful deepfakes without risking detection. Watermarking makes deepfakes detectable by embedding an identifiable code into the generator that is later extractable from its generated images. We propose Pivotal Tuning Watermarking (PTW), a method for watermarking pre-trained generators (i) three orders of magnitude faster than watermarking from scratch and (ii) without the need for any training data. We improve existing watermarking methods and scale to generators $4 \times$ larger than related work. PTW can embed longer codes than existing methods while better preserving the generator's image quality. We propose rigorous, game-based definitions for robustness and undetectability and our study reveals that watermarking is not robust against an adaptive white-box attacker who has control over the generator's parameters. We propose an adaptive attack that can successfully remove any watermarking with access to only $200$ non-watermarked images. Our work challenges the trustworthiness of watermarking for deepfake detection when the parameters of a generator are available.
Abstract:Adversarial training has been actively studied in recent computer vision research to improve the robustness of models. However, due to the huge computational cost of generating adversarial samples, adversarial training methods are often slow. In this paper, we study the problem of learning a robust dataset such that any classifier naturally trained on the dataset is adversarially robust. Such a dataset benefits the downstream tasks as natural training is much faster than adversarial training, and demonstrates that the desired property of robustness is transferable between models and data. In this work, we propose a principled, tri-level optimization to formulate the robust dataset learning problem. We show that, under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset. Extensive experiments on MNIST, CIFAR10, and TinyImageNet demostrate the effectiveness of our algorithm with different network initializations and architectures.