Abstract:3D semantic field learning is crucial for applications like autonomous navigation, AR/VR, and robotics, where accurate comprehension of 3D scenes from limited viewpoints is essential. Existing methods struggle under sparse view conditions, relying on inefficient per-scene multi-view optimizations, which are impractical for many real-world tasks. To address this, we propose SLGaussian, a feed-forward method for constructing 3D semantic fields from sparse viewpoints, allowing direct inference of 3DGS-based scenes. By ensuring consistent SAM segmentations through video tracking and using low-dimensional indexing for high-dimensional CLIP features, SLGaussian efficiently embeds language information in 3D space, offering a robust solution for accurate 3D scene understanding under sparse view conditions. In experiments on two-view sparse 3D object querying and segmentation in the LERF and 3D-OVS datasets, SLGaussian outperforms existing methods in chosen IoU, Localization Accuracy, and mIoU. Moreover, our model achieves scene inference in under 30 seconds and open-vocabulary querying in just 0.011 seconds per query.
Abstract:Large-scale pre-trained generative models are taking the world by storm, due to their abilities in generating creative content. Meanwhile, safeguards for these generative models are developed, to protect users' rights and safety, most of which are designed for large language models. Existing methods primarily focus on jailbreak and adversarial attacks, which mainly evaluate the model's safety under malicious prompts. Recent work found that manually crafted safe prompts can unintentionally trigger unsafe generations. To further systematically evaluate the safety risks of text-to-image models, we propose a novel Automatic Red-Teaming framework, ART. Our method leverages both vision language model and large language model to establish a connection between unsafe generations and their prompts, thereby more efficiently identifying the model's vulnerabilities. With our comprehensive experiments, we reveal the toxicity of the popular open-source text-to-image models. The experiments also validate the effectiveness, adaptability, and great diversity of ART. Additionally, we introduce three large-scale red-teaming datasets for studying the safety risks associated with text-to-image models. Datasets and models can be found in https://github.com/GuanlinLee/ART.
Abstract:Mainstream backdoor attack methods typically demand substantial tuning data for poisoning, limiting their practicality and potentially degrading the overall performance when applied to Large Language Models (LLMs). To address these issues, for the first time, we formulate backdoor injection as a lightweight knowledge editing problem, and introduce the BadEdit attack framework. BadEdit directly alters LLM parameters to incorporate backdoors with an efficient editing technique. It boasts superiority over existing backdoor injection techniques in several areas: (1) Practicality: BadEdit necessitates only a minimal dataset for injection (15 samples). (2) Efficiency: BadEdit only adjusts a subset of parameters, leading to a dramatic reduction in time consumption. (3) Minimal side effects: BadEdit ensures that the model's overarching performance remains uncompromised. (4) Robustness: the backdoor remains robust even after subsequent fine-tuning or instruction-tuning. Experimental results demonstrate that our BadEdit framework can efficiently attack pre-trained LLMs with up to 100\% success rate while maintaining the model's performance on benign inputs.
Abstract:Existing black-box attacks have demonstrated promising potential in creating adversarial examples (AE) to deceive deep learning models. Most of these attacks need to handle a vast optimization space and require a large number of queries, hence exhibiting limited practical impacts in real-world scenarios. In this paper, we propose a novel black-box attack strategy, Conditional Diffusion Model Attack (CDMA), to improve the query efficiency of generating AEs under query-limited situations. The key insight of CDMA is to formulate the task of AE synthesis as a distribution transformation problem, i.e., benign examples and their corresponding AEs can be regarded as coming from two distinctive distributions and can transform from each other with a particular converter. Unlike the conventional \textit{query-and-optimization} approach, we generate eligible AEs with direct conditional transform using the aforementioned data converter, which can significantly reduce the number of queries needed. CDMA adopts the conditional Denoising Diffusion Probabilistic Model as the converter, which can learn the transformation from clean samples to AEs, and ensure the smooth development of perturbed noise resistant to various defense strategies. We demonstrate the effectiveness and efficiency of CDMA by comparing it with nine state-of-the-art black-box attacks across three benchmark datasets. On average, CDMA can reduce the query count to a handful of times; in most cases, the query count is only ONE. We also show that CDMA can obtain $>99\%$ attack success rate for untarget attacks over all datasets and targeted attack over CIFAR-10 with the noise budget of $\epsilon=16$.
Abstract:Adversarial training is an important topic in robust deep learning, but the community lacks attention to its practical usage. In this paper, we aim to resolve a real-world application challenge, i.e., training a model on an imbalanced and noisy dataset to achieve high clean accuracy and robustness, with our proposed Omnipotent Adversarial Training (OAT). Our strategy consists of two innovative methodologies to address the label noise and data imbalance in the training set. We first introduce an oracle into the adversarial training process to help the model learn a correct data-label conditional distribution. This carefully-designed oracle can provide correct label annotations for adversarial training. We further propose logits adjustment adversarial training to overcome the data imbalance challenge, which can help the model learn a Bayes-optimal distribution. Our comprehensive evaluation results show that OAT outperforms other baselines by more than 20% clean accuracy improvement and 10% robust accuracy improvement under the complex combinations of data imbalance and label noise scenarios. The code can be found in https://github.com/GuanlinLee/OAT.
Abstract:Backdoor attacks for neural code models have gained considerable attention due to the advancement of code intelligence. However, most existing works insert triggers into task-specific data for code-related downstream tasks, thereby limiting the scope of attacks. Moreover, the majority of attacks for pre-trained models are designed for understanding tasks. In this paper, we propose task-agnostic backdoor attacks for code pre-trained models. Our backdoored model is pre-trained with two learning strategies (i.e., Poisoned Seq2Seq learning and token representation learning) to support the multi-target attack of downstream code understanding and generation tasks. During the deployment phase, the implanted backdoors in the victim models can be activated by the designed triggers to achieve the targeted attack. We evaluate our approach on two code understanding tasks and three code generation tasks over seven datasets. Extensive experiments demonstrate that our approach can effectively and stealthily attack code-related downstream tasks.
Abstract:Multiplication-less neural networks significantly reduce the time and energy cost on the hardware platform, as the compute-intensive multiplications are replaced with lightweight bit-shift operations. However, existing bit-shift networks are all directly transferred from state-of-the-art convolutional neural networks (CNNs), which lead to non-negligible accuracy drop or even failure of model convergence. To combat this, we propose ShiftNAS, the first framework tailoring Neural Architecture Search (NAS) to substantially reduce the accuracy gap between bit-shift neural networks and their real-valued counterparts. Specifically, we pioneer dragging NAS into a shift-oriented search space and endow it with the robust topology-related search strategy and custom regularization and stabilization. As a result, our ShiftNAS breaks through the incompatibility of traditional NAS methods for bit-shift neural networks and achieves more desirable performance in terms of accuracy and convergence. Extensive experiments demonstrate that ShiftNAS sets a new state-of-the-art for bit-shift neural networks, where the accuracy increases (1.69-8.07)% on CIFAR10, (5.71-18.09)% on CIFAR100 and (4.36-67.07)% on ImageNet, especially when many conventional CNNs fail to converge on ImageNet with bit-shift weights.
Abstract:Pre-trained Natural Language Processing (NLP) models can be easily adapted to a variety of downstream language tasks. This significantly accelerates the development of language models. However, NLP models have been shown to be vulnerable to backdoor attacks, where a pre-defined trigger word in the input text causes model misprediction. Previous NLP backdoor attacks mainly focus on some specific tasks. This makes those attacks less general and applicable to other kinds of NLP models and tasks. In this work, we propose \Name, the first task-agnostic backdoor attack against the pre-trained NLP models. The key feature of our attack is that the adversary does not need prior information about the downstream tasks when implanting the backdoor to the pre-trained model. When this malicious model is released, any downstream models transferred from it will also inherit the backdoor, even after the extensive transfer learning process. We further design a simple yet effective strategy to bypass a state-of-the-art defense. Experimental results indicate that our approach can compromise a wide range of downstream NLP tasks in an effective and stealthy way.
Abstract:In this paper, we present the first attack methodology to extract black-box Deep Reinforcement Learning (DRL) models only from their actions with the environment. Model extraction attacks against supervised Deep Learning models have been widely studied. However, those techniques cannot be applied to the reinforcement learning scenario due to DRL models' high complexity, stochasticity and limited observable information. Our methodology overcomes those challenges by proposing two techniques. The first technique is an RNN classifier which can reveal the training algorithms of the target black-box DRL model only based on its predicted actions. The second technique is the adoption of imitation learning to replicate the model from the extracted training algorithm. Experimental results indicate that the integration of these two techniques can effectively recover the DRL models with high fidelity. We also demonstrate a use case to show that our model extraction attack can significantly improve the success rate of adversarial attacks, making the DRL models more vulnerable.
Abstract:Adversarial attacks against conventional Deep Learning (DL) systems and algorithms have been widely studied, and various defenses were proposed. However, the possibility and feasibility of such attacks against Deep Reinforcement Learning (DRL) are less explored. As DRL has achieved great success in various complex tasks, designing effective adversarial attacks is an indispensable prerequisite towards building robust DRL algorithms. In this paper, we introduce two novel adversarial attack techniques to \emph{stealthily} and \emph{efficiently} attack the DRL agents. These two techniques enable an adversary to inject adversarial samples in a minimal set of critical moments while causing the most severe damage to the agent. The first technique is the \emph{critical point attack}: the adversary builds a model to predict the future environmental states and agent's actions, assesses the damage of each possible attack strategy, and selects the optimal one. The second technique is the \emph{antagonist attack}: the adversary automatically learns a domain-agnostic model to discover the critical moments of attacking the agent in an episode. Experimental results demonstrate the effectiveness of our techniques. Specifically, to successfully attack the DRL agent, our critical point technique only requires 1 (TORCS) or 2 (Atari Pong and Breakout) steps, and the antagonist technique needs fewer than 5 steps (4 Mujoco tasks), which are significant improvements over state-of-the-art methods.