Abstract:Large-scale data collection is essential for developing personalized training data, mitigating the shortage of training data, and fine-tuning specialized models. However, creating high-quality datasets quickly and accurately remains a challenge due to annotation errors, the substantial time and costs associated with human labor. To address these issues, we propose Automatic Dataset Construction (ADC), an innovative methodology that automates dataset creation with negligible cost and high efficiency. Taking the image classification task as a starting point, ADC leverages LLMs for the detailed class design and code generation to collect relevant samples via search engines, significantly reducing the need for manual annotation and speeding up the data generation process. Despite these advantages, ADC also encounters real-world challenges such as label errors (label noise) and imbalanced data distributions (label bias). We provide open-source software that incorporates existing methods for label error detection, robust learning under noisy and biased data, ensuring a higher-quality training data and more robust model training procedure. Furthermore, we design three benchmark datasets focused on label noise detection, label noise learning, and class-imbalanced learning. These datasets are vital because there are few existing datasets specifically for label noise detection, despite its importance. Finally, we evaluate the performance of existing popular methods on these datasets, thereby facilitating further research in the field.
Abstract:Masked Image Modeling (MIM) has achieved significant success in the realm of self-supervised learning (SSL) for visual recognition. The image encoder pre-trained through MIM, involving the masking and subsequent reconstruction of input images, attains state-of-the-art performance in various downstream vision tasks. However, most existing works focus on improving the performance of MIM.In this work, we take a different angle by studying the pre-training data privacy of MIM. Specifically, we propose the first membership inference attack against image encoders pre-trained by MIM, which aims to determine whether an image is part of the MIM pre-training dataset. The key design is to simulate the pre-training paradigm of MIM, i.e., image masking and subsequent reconstruction, and then obtain reconstruction errors. These reconstruction errors can serve as membership signals for achieving attack goals, as the encoder is more capable of reconstructing the input image in its training set with lower errors. Extensive evaluations are conducted on three model architectures and three benchmark datasets. Empirical results show that our attack outperforms baseline methods. Additionally, we undertake intricate ablation studies to analyze multiple factors that could influence the performance of the attack.
Abstract:Large Language Models (LLMs) excel in various applications, including text generation and complex tasks. However, the misuse of LLMs raises concerns about the authenticity and ethical implications of the content they produce, such as deepfake news, academic fraud, and copyright infringement. Watermarking techniques, which embed identifiable markers in machine-generated text, offer a promising solution to these issues by allowing for content verification and origin tracing. Unfortunately, the robustness of current LLM watermarking schemes under potential watermark removal attacks has not been comprehensively explored. In this paper, to fill this gap, we first systematically comb the mainstream watermarking schemes and removal attacks on machine-generated texts, and then we categorize them into pre-text (before text generation) and post-text (after text generation) classes so that we can conduct diversified analyses. In our experiments, we evaluate eight watermarks (five pre-text, three post-text) and twelve attacks (two pre-text, ten post-text) across 87 scenarios. Evaluation results indicate that (1) KGW and Exponential watermarks offer high text quality and watermark retention but remain vulnerable to most attacks; (2) Post-text attacks are found to be more efficient and practical than pre-text attacks; (3) Pre-text watermarks are generally more imperceptible, as they do not alter text fluency, unlike post-text watermarks; (4) Additionally, combined attack methods can significantly increase effectiveness, highlighting the need for more robust watermarking solutions. Our study underscores the vulnerabilities of current techniques and the necessity for developing more resilient schemes.
Abstract:Large Language Models (LLMs) have performed exceptionally in various text-generative tasks, including question answering, translation, code completion, etc. However, the over-assistance of LLMs has raised the challenge of "jailbreaking", which induces the model to generate malicious responses against the usage policy and society by designing adversarial prompts. With the emergence of jailbreak attack methods exploiting different vulnerabilities in LLMs, the corresponding safety alignment measures are also evolving. In this paper, we propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods. For instance, the attack methods are divided into black-box and white-box attacks based on the transparency of the target model. Meanwhile, we classify defense methods into prompt-level and model-level defenses. Additionally, we further subdivide these attack and defense methods into distinct sub-classes and present a coherent diagram illustrating their relationships. We also conduct an investigation into the current evaluation methods and compare them from different perspectives. Our findings aim to inspire future research and practical implementations in safeguarding LLMs against adversarial attacks. Above all, although jailbreak remains a significant concern within the community, we believe that our work enhances the understanding of this domain and provides a foundation for developing more secure LLMs.
Abstract:Jailbreak attacks aim to induce Large Language Models (LLMs) to generate harmful responses for forbidden instructions, presenting severe misuse threats to LLMs. Up to now, research into jailbreak attacks and defenses is emerging, however, there is (surprisingly) no consensus on how to evaluate whether a jailbreak attempt is successful. In other words, the methods to assess the harmfulness of an LLM's response are varied, such as manual annotation or prompting GPT-4 in specific ways. Each approach has its own set of strengths and weaknesses, impacting their alignment with human values, as well as the time and financial cost. This diversity in evaluation presents challenges for researchers in choosing suitable evaluation methods and conducting fair comparisons across different jailbreak attacks and defenses. In this paper, we conduct a comprehensive analysis of jailbreak evaluation methodologies, drawing from nearly ninety jailbreak research released between May 2023 and April 2024. Our study introduces a systematic taxonomy of jailbreak evaluators, offering in-depth insights into their strengths and weaknesses, along with the current status of their adaptation. Moreover, to facilitate subsequent research, we propose JailbreakEval, a user-friendly toolkit focusing on the evaluation of jailbreak attempts. It includes various well-known evaluators out-of-the-box, so that users can obtain evaluation results with only a single command. JailbreakEval also allows users to customize their own evaluation workflow in a unified framework with the ease of development and comparison. In summary, we regard JailbreakEval to be a catalyst that simplifies the evaluation process in jailbreak research and fosters an inclusive standard for jailbreak evaluation within the community.
Abstract:Despite the remarkable advance of large language models (LLMs), the prevalence of non-factual responses remains a common issue. This work studies non-factuality prediction (NFP), which predicts whether an LLM will generate non-factual responses to a question before the generation process. Previous efforts on NFP usually rely on extensive computation. In this work, we conduct extensive analysis to explore the capabilities of using a lightweight probe to elicit ``whether an LLM knows'' from the hidden representations of questions. Additionally, we discover that the non-factuality probe employs similar patterns for NFP across multiple LLMs. Motivated by the intriguing finding, we conduct effective transfer learning for cross-LLM NFP and propose a question-aligned strategy to ensure the efficacy of mini-batch based training.
Abstract:A graph neural network (GNN) is a type of neural network that is specifically designed to process graph-structured data. Typically, GNNs can be implemented in two settings, including the transductive setting and the inductive setting. In the transductive setting, the trained model can only predict the labels of nodes that were observed at the training time. In the inductive setting, the trained model can be generalized to new nodes/graphs. Due to its flexibility, the inductive setting is the most popular GNN setting at the moment. Previous work has shown that transductive GNNs are vulnerable to a series of privacy attacks. However, a comprehensive privacy analysis of inductive GNN models is still missing. This paper fills the gap by conducting a systematic privacy analysis of inductive GNNs through the lens of link stealing attacks, one of the most popular attacks that are specifically designed for GNNs. We propose two types of link stealing attacks, i.e., posterior-only attacks and combined attacks. We define threat models of the posterior-only attacks with respect to node topology and the combined attacks by considering combinations of posteriors, node attributes, and graph features. Extensive evaluation on six real-world datasets demonstrates that inductive GNNs leak rich information that enables link stealing attacks with advantageous properties. Even attacks with no knowledge about graph structures can be effective. We also show that our attacks are robust to different node similarities and different graph features. As a counterpart, we investigate two possible defenses and discover they are ineffective against our attacks, which calls for more effective defenses.
Abstract:Model merging is a promising lightweight model empowerment technique that does not rely on expensive computing devices (e.g., GPUs) or require the collection of specific training data. Instead, it involves editing different upstream model parameters to absorb their downstream task capabilities. However, uncertified model merging can infringe upon the Intellectual Property (IP) rights of the original upstream models. In this paper, we conduct the first study on the robustness of IP protection methods in model merging scenarios. We investigate two state-of-the-art IP protection techniques: Quantization Watermarking and Instructional Fingerprint, along with various advanced model merging technologies, such as Task Arithmetic, TIES-MERGING, and so on. Experimental results indicate that current Large Language Model (LLM) watermarking techniques cannot survive in the merged models, whereas model fingerprinting techniques can. Our research aims to highlight that model merging should be an indispensable consideration in the robustness assessment of model IP protection techniques, thereby promoting the healthy development of the open-source LLM community.
Abstract:While advanced machine learning (ML) models are deployed in numerous real-world applications, previous works demonstrate these models have security and privacy vulnerabilities. Various empirical research has been done in this field. However, most of the experiments are performed on target ML models trained by the security researchers themselves. Due to the high computational resource requirement for training advanced models with complex architectures, researchers generally choose to train a few target models using relatively simple architectures on typical experiment datasets. We argue that to understand ML models' vulnerabilities comprehensively, experiments should be performed on a large set of models trained with various purposes (not just the purpose of evaluating ML attacks and defenses). To this end, we propose using publicly available models with weights from the Internet (public models) for evaluating attacks and defenses on ML models. We establish a database, namely SecurityNet, containing 910 annotated image classification models. We then analyze the effectiveness of several representative attacks/defenses, including model stealing attacks, membership inference attacks, and backdoor detection on these public models. Our evaluation empirically shows the performance of these attacks/defenses can vary significantly on public models compared to self-trained models. We share SecurityNet with the research community. and advocate researchers to perform experiments on public models to better demonstrate their proposed methods' effectiveness in the future.
Abstract:Training a machine learning model with data following a meaningful order, i.e., from easy to hard, has been proven to be effective in accelerating the training process and achieving better model performance. The key enabling technique is curriculum learning (CL), which has seen great success and has been deployed in areas like image and text classification. Yet, how CL affects the privacy of machine learning is unclear. Given that CL changes the way a model memorizes the training data, its influence on data privacy needs to be thoroughly evaluated. To fill this knowledge gap, we perform the first study and leverage membership inference attack (MIA) and attribute inference attack (AIA) as two vectors to quantify the privacy leakage caused by CL. Our evaluation of nine real-world datasets with attack methods (NN-based, metric-based, label-only MIA, and NN-based AIA) revealed new insights about CL. First, MIA becomes slightly more effective when CL is applied, but the impact is much more prominent to a subset of training samples ranked as difficult. Second, a model trained under CL is less vulnerable under AIA, compared to MIA. Third, the existing defense techniques like DP-SGD, MemGuard, and MixupMMD are still effective under CL, though DP-SGD has a significant impact on target model accuracy. Finally, based on our insights into CL, we propose a new MIA, termed Diff-Cali, which exploits the difficulty scores for result calibration and is demonstrated to be effective against all CL methods and the normal training method. With this study, we hope to draw the community's attention to the unintended privacy risks of emerging machine-learning techniques and develop new attack benchmarks and defense solutions.