Abstract:Recently, multi-node inertial measurement unit (IMU)-based odometry for legged robots has gained attention due to its cost-effectiveness, power efficiency, and high accuracy. However, the spatial and temporal misalignment between foot-end motion derived from forward kinematics and foot IMU measurements can introduce inconsistent constraints, resulting in odometry drift. Therefore, accurate spatial-temporal calibration is crucial for the multi-IMU systems. Although existing multi-IMU calibration methods have addressed passive single-rigid-body sensor calibration, they are inadequate for legged systems. This is due to the insufficient excitation from traditional gaits for calibration, and enlarged sensitivity to IMU noise during kinematic chain transformations. To address these challenges, we propose A$^2$I-Calib, an anti-noise active multi-IMU calibration framework enabling autonomous spatial-temporal calibration for arbitrary foot-mounted IMUs. Our A$^2$I-Calib includes: 1) an anti-noise trajectory generator leveraging a proposed basis function selection theorem to minimize the condition number in correlation analysis, thus reducing noise sensitivity, and 2) a reinforcement learning (RL)-based controller that ensures robust execution of calibration motions. Furthermore, A$^2$I-Calib is validated on simulation and real-world quadruped robot platforms with various multi-IMU settings, which demonstrates a significant reduction in noise sensitivity and calibration errors, thereby improving the overall multi-IMU odometry performance.
Abstract:Event-based visual odometry has recently gained attention for its high accuracy and real-time performance in fast-motion systems. Unlike traditional synchronous estimators that rely on constant-frequency (zero-order) triggers, event-based visual odometry can actively accumulate information to generate temporally high-order estimation triggers. However, existing methods primarily focus on adaptive event representation after estimation triggers, neglecting the decision-making process for efficient temporal triggering itself. This oversight leads to the computational redundancy and noise accumulation. In this paper, we introduce a temporally high-order event-based visual odometry with spiking event accumulation networks (THE-SEAN). To the best of our knowledge, it is the first event-based visual odometry capable of dynamically adjusting its estimation trigger decision in response to motion and environmental changes. Inspired by biological systems that regulate hormone secretion to modulate heart rate, a self-supervised spiking neural network is designed to generate estimation triggers. This spiking network extracts temporal features to produce triggers, with rewards based on block matching points and Fisher information matrix (FIM) trace acquired from the estimator itself. Finally, THE-SEAN is evaluated across several open datasets, thereby demonstrating average improvements of 13\% in estimation accuracy, 9\% in smoothness, and 38\% in triggering efficiency compared to the state-of-the-art methods.
Abstract:Large Vision-Language Models (LVLMs) have become powerful and widely adopted in some practical applications. However, recent research has revealed their vulnerability to multimodal jailbreak attacks, whereby the model can be induced to generate harmful content, leading to safety risks. Although most LVLMs have undergone safety alignment, recent research shows that the visual modality is still vulnerable to jailbreak attacks. In our work, we discover that by using flowcharts with partially harmful information, LVLMs can be induced to provide additional harmful details. Based on this, we propose a jailbreak attack method based on auto-generated flowcharts, FC-Attack. Specifically, FC-Attack first fine-tunes a pre-trained LLM to create a step-description generator based on benign datasets. The generator is then used to produce step descriptions corresponding to a harmful query, which are transformed into flowcharts in 3 different shapes (vertical, horizontal, and S-shaped) as visual prompts. These flowcharts are then combined with a benign textual prompt to execute a jailbreak attack on LVLMs. Our evaluations using the Advbench dataset show that FC-Attack achieves over 90% attack success rates on Gemini-1.5, Llaval-Next, Qwen2-VL, and InternVL-2.5 models, outperforming existing LVLM jailbreak methods. Additionally, we investigate factors affecting the attack performance, including the number of steps and the font styles in the flowcharts. Our evaluation shows that FC-Attack can improve the jailbreak performance from 4% to 28% in Claude-3.5 by changing the font style. To mitigate the attack, we explore several defenses and find that AdaShield can largely reduce the jailbreak performance but with the cost of utility drop.
Abstract:Recent advancements in Large Language Models (LLMs) have significantly enhanced the capabilities of AI-Powered Search Engines (AIPSEs), offering precise and efficient responses by integrating external databases with pre-existing knowledge. However, we observe that these AIPSEs raise risks such as quoting malicious content or citing malicious websites, leading to harmful or unverified information dissemination. In this study, we conduct the first safety risk quantification on seven production AIPSEs by systematically defining the threat model, risk level, and evaluating responses to various query types. With data collected from PhishTank, ThreatBook, and LevelBlue, our findings reveal that AIPSEs frequently generate harmful content that contains malicious URLs even with benign queries (e.g., with benign keywords). We also observe that directly query URL will increase the risk level while query with natural language will mitigate such risk. We further perform two case studies on online document spoofing and phishing to show the ease of deceiving AIPSEs in the real-world setting. To mitigate these risks, we develop an agent-based defense with a GPT-4o-based content refinement tool and an XGBoost-based URL detector. Our evaluation shows that our defense can effectively reduce the risk but with the cost of reducing available information. Our research highlights the urgent need for robust safety measures in AIPSEs.
Abstract:Social media platforms are experiencing a growing presence of AI-Generated Texts (AIGTs). However, the misuse of AIGTs could have profound implications for public opinion, such as spreading misinformation and manipulating narratives. Despite its importance, a systematic study to assess the prevalence of AIGTs on social media is still lacking. To address this gap, this paper aims to quantify, monitor, and analyze the AIGTs on online social media platforms. We first collect a dataset (SM-D) with around 2.4M posts from 3 major social media platforms: Medium, Quora, and Reddit. Then, we construct a diverse dataset (AIGTBench) to train and evaluate AIGT detectors. AIGTBench combines popular open-source datasets and our AIGT datasets generated from social media texts by 12 LLMs, serving as a benchmark for evaluating mainstream detectors. With this setup, we identify the best-performing detector (OSM-Det). We then apply OSM-Det to SM-D to track AIGTs over time and observe different trends of AI Attribution Rate (AAR) across social media platforms from January 2022 to October 2024. Specifically, Medium and Quora exhibit marked increases in AAR, rising from 1.77% to 37.03% and 2.06% to 38.95%, respectively. In contrast, Reddit shows slower growth, with AAR increasing from 1.31% to 2.45% over the same period. Our further analysis indicates that AIGTs differ from human-written texts across several dimensions, including linguistic patterns, topic distributions, engagement levels, and the follower distribution of authors. We envision our analysis and findings on AIGTs in social media can shed light on future research in this domain.
Abstract:The rise of large language models (LLMs) has raised concerns about machine-generated text (MGT), including ethical and practical issues like plagiarism and misinformation. Building a robust and highly generalizable MGT detection system has become increasingly important. This work investigates the generalization capabilities of MGT detectors in three aspects: First, we construct MGTAcademic, a large-scale dataset focused on academic writing, featuring human-written texts (HWTs) and MGTs across STEM, Humanities, and Social Sciences, paired with an extensible code framework for efficient benchmarking. Second, we investigate the transferability of detectors across domains and LLMs, leveraging fine-grained datasets to reveal insights into domain transferring and implementing few-shot techniques to improve the performance by roughly 13.2%. Third, we introduce a novel attribution task where models must adapt to new classes over time without (or with very limited) access to prior training data and benchmark detectors. We implement several adapting techniques to improve the performance by roughly 10% and highlight the inherent complexity of the task. Our findings provide insights into the generalization ability of MGT detectors across diverse scenarios and lay the foundation for building robust, adaptive detection systems.
Abstract:Recent advancements in fine-tuning proprietary language models enable customized applications across various domains but also introduce two major challenges: high resource demands and security risks. Regarding resource demands, recent work proposes novel partial compression, such as BitDelta, to quantize the delta weights between the fine-tuned model and base model. Regarding the security risks, user-defined fine-tuning can introduce security vulnerabilities, such as alignment issues, backdoor attacks, and hallucinations. However, most of the current efforts in security assessment focus on the full-precision or full-compression models, it is not well-discussed how the partial compression methods affect security concerns. To bridge this gap, we evaluate the robustness of delta-weight quantization against these security threats. In this paper, we uncover a "free lunch" phenomenon: partial compression can enhance model security against fine-tuning-based attacks with bearable utility loss. Using Llama-2-7b-chat as a case study, we show that, with under 10% utility degradation, the partial compression mitigates alignment-breaking risks by up to 66.17%, harmful backdoor vulnerabilities by 64.46%, and targeted output manipulation risks by up to 90.53%. We further apply LogitLens to visualize internal state transformations during forward passes, suggesting mechanisms for both security failure and recovery in standard versus compressed fine-tuning. This work offers new insights into selecting effective delta compression methods for secure, resource-efficient multi-tenant services.
Abstract:Traversability estimation is the foundation of path planning for a general navigation system. However, complex and dynamic environments pose challenges for the latest methods using self-supervised learning (SSL) technique. Firstly, existing SSL-based methods generate sparse annotations lacking detailed boundary information. Secondly, their strategies focus on hard samples for rapid adaptation, leading to forgetting and biased predictions. In this work, we propose IMOST, a continual traversability learning framework composed of two key modules: incremental dynamic memory (IDM) and self-supervised annotation (SSA). By mimicking human memory mechanisms, IDM allocates novel data samples to new clusters according to information expansion criterion. It also updates clusters based on diversity rule, ensuring a representative characterization of new scene. This mechanism enhances scene-aware knowledge diversity while maintaining a compact memory capacity. The SSA module, integrating FastSAM, utilizes point prompts to generate complete annotations in real time which reduces training complexity. Furthermore, IMOST has been successfully deployed on the quadruped robot, with performance evaluated during the online learning process. Experimental results on both public and self-collected datasets demonstrate that our IMOST outperforms current state-of-the-art method, maintains robust recognition capabilities and adaptability across various scenarios. The code is available at https://github.com/SJTU-MKH/OCLTrav.
Abstract:Large Language Models (LLMs) have performed exceptionally in various text-generative tasks, including question answering, translation, code completion, etc. However, the over-assistance of LLMs has raised the challenge of "jailbreaking", which induces the model to generate malicious responses against the usage policy and society by designing adversarial prompts. With the emergence of jailbreak attack methods exploiting different vulnerabilities in LLMs, the corresponding safety alignment measures are also evolving. In this paper, we propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods. For instance, the attack methods are divided into black-box and white-box attacks based on the transparency of the target model. Meanwhile, we classify defense methods into prompt-level and model-level defenses. Additionally, we further subdivide these attack and defense methods into distinct sub-classes and present a coherent diagram illustrating their relationships. We also conduct an investigation into the current evaluation methods and compare them from different perspectives. Our findings aim to inspire future research and practical implementations in safeguarding LLMs against adversarial attacks. Above all, although jailbreak remains a significant concern within the community, we believe that our work enhances the understanding of this domain and provides a foundation for developing more secure LLMs.
Abstract:Traversability estimation in off-road terrains is an essential procedure for autonomous navigation. However, creating reliable labels for complex interactions between the robot and the surface is still a challenging problem in learning-based costmap generation. To address this, we propose a method that predicts traversability costmaps by leveraging both visual and geometric information of the environment. To quantify the surface properties like roughness and bumpiness, we introduce a novel way of risk-aware labelling with proprioceptive information for network training. We validate our method in costmap prediction and navigation tasks for complex off-road scenarios. Our results demonstrate that our costmap prediction method excels in terms of average accuracy and MSE. The navigation results indicate that using our learned costmaps leads to safer and smoother driving, outperforming previous methods in terms of the highest success rate, lowest normalized trajectory length, lowest time cost, and highest mean stability across two scenarios.