Abstract:Large Language Models (LLMs), renowned for their superior proficiency in language comprehension and generation, stimulate a vibrant ecosystem of applications around them. However, their extensive assimilation into various services introduces significant security risks. This study deconstructs the complexities and implications of prompt injection attacks on actual LLM-integrated applications. Initially, we conduct an exploratory analysis on ten commercial applications, highlighting the constraints of current attack strategies in practice. Prompted by these limitations, we subsequently formulate HouYi, a novel black-box prompt injection attack technique, which draws inspiration from traditional web injection attacks. HouYi is compartmentalized into three crucial elements: a seamlessly-incorporated pre-constructed prompt, an injection prompt inducing context partition, and a malicious payload designed to fulfill the attack objectives. Leveraging HouYi, we unveil previously unknown and severe attack outcomes, such as unrestricted arbitrary LLM usage and uncomplicated application prompt theft. We deploy HouYi on 36 actual LLM-integrated applications and discern 31 applications susceptible to prompt injection. 10 vendors have validated our discoveries, including Notion, which has the potential to impact millions of users. Our investigation illuminates both the possible risks of prompt injection attacks and the possible tactics for mitigation.
Abstract:Software built on top of machine learning algorithms is becoming increasingly prevalent in a variety of fields, including college admissions, healthcare, insurance, and justice. The effectiveness and efficiency of these systems heavily depend on the quality of the training datasets. Biased datasets can lead to unfair and potentially harmful outcomes, particularly in such critical decision-making systems where the allocation of resources may be affected. This can exacerbate discrimination against certain groups and cause significant social disruption. To mitigate such unfairness, a series of bias-mitigating methods are proposed. Generally, these studies improve the fairness of the trained models to a certain degree but with the expense of sacrificing the model performance. In this paper, we propose FITNESS, a bias mitigation approach via de-correlating the causal effects between sensitive features (e.g., the sex) and the label. Our key idea is that by de-correlating such effects from a causality perspective, the model would avoid making predictions based on sensitive features and thus fairness could be improved. Furthermore, FITNESS leverages multi-objective optimization to achieve a better performance-fairness trade-off. To evaluate the effectiveness, we compare FITNESS with 7 state-of-the-art methods in 8 benchmark tasks by multiple metrics. Results show that FITNESS can outperform the state-of-the-art methods on bias mitigation while preserve the model's performance: it improved the model's fairness under all the scenarios while decreased the model's performance under only 26.67% of the scenarios. Additionally, FITNESS surpasses the Fairea Baseline in 96.72% cases, outperforming all methods we compared.
Abstract:Malicious applications (especially in the Android platform) are a serious threat to developers and end-users. Many research efforts have hence been devoted to developing effective approaches to defend Android malware. However, with the explosive growth of Android malware and the continuous advancement of malicious evasion technologies like obfuscation and reflection, android malware defenses based on manual rules or traditional machine learning may not be effective due to limited apriori knowledge. In recent years, a dominant research field of deep learning (DL) with the powerful feature abstraction ability has demonstrated a compelling and promising performance in various fields, like Nature Language processing and image processing. To this end, employing deep learning techniques to thwart the attack of Android malware has recently gained considerable research attention. Yet, there exists no systematic literature review that focuses on deep learning approaches for Android Malware defenses. In this paper, we conducted a systematic literature review to search and analyze how deep learning approaches have been applied in the context of malware defenses in the Android environment. As a result, a total of 104 studies were identified over the period 2014-2020. The results of our investigation show that even though most of these studies still mainly consider DL-based on Android malware detection, 35 primary studies (33.7\%) design the defenses approaches based on other scenarios. This review also describes research trends, research focuses, challenges, and future research directions in DL-based Android malware defenses.
Abstract:Deep learning models are widely used for image analysis. While they offer high performance in terms of accuracy, people are concerned about if these models inappropriately make inferences using irrelevant features that are not encoded from the target object in a given image. To address the concern, we propose a metamorphic testing approach that assesses if a given inference is made based on irrelevant features. Specifically, we propose two novel metamorphic relations to detect such inappropriate inferences. We applied our approach to 10 image classification models and 10 object detection models, with three large datasets, i.e., ImageNet, COCO, and Pascal VOC. Over 5.3% of the top-5 correct predictions made by the image classification models are subject to inappropriate inferences using irrelevant features. The corresponding rate for the object detection models is over 8.5%. Based on the findings, we further designed a new image generation strategy that can effectively attack existing models. Comparing with a baseline approach, our strategy can double the success rate of attacks.