Abstract:Large Language Models (LLMs) have emerged as the new recommendation engines, outperforming traditional methods in both capability and scope, particularly in code generation applications. Our research reveals a novel provider bias in LLMs, namely without explicit input prompts, these models show systematic preferences for services from specific providers in their recommendations (e.g., favoring Google Cloud over Microsoft Azure). This bias holds significant implications for market dynamics and societal equilibrium, potentially promoting digital monopolies. It may also deceive users and violate their expectations, leading to various consequences. This paper presents the first comprehensive empirical study of provider bias in LLM code generation. We develop a systematic methodology encompassing an automated pipeline for dataset generation, incorporating 6 distinct coding task categories and 30 real-world application scenarios. Our analysis encompasses over 600,000 LLM-generated responses across seven state-of-the-art models, utilizing approximately 500 million tokens (equivalent to \$5,000+ in computational costs). The study evaluates both the generated code snippets and their embedded service provider selections to quantify provider bias. Additionally, we conduct a comparative analysis of seven debiasing prompting techniques to assess their efficacy in mitigating these biases. Our findings demonstrate that LLMs exhibit significant provider preferences, predominantly favoring services from Google and Amazon, and can autonomously modify input code to incorporate their preferred providers without users' requests. Notably, we observe discrepancies between providers recommended in conversational contexts versus those implemented in generated code. The complete dataset and analysis results are available in our repository.
Abstract:Image content safety has become a significant challenge with the rise of visual media on online platforms. Meanwhile, in the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content, such as images containing sexual or violent material. Thus, it becomes crucial to identify such unsafe images based on established safety rules. Pre-trained Multimodal Large Language Models (MLLMs) offer potential in this regard, given their strong pattern recognition abilities. Existing approaches typically fine-tune MLLMs with human-labeled datasets, which however brings a series of drawbacks. First, relying on human annotators to label data following intricate and detailed guidelines is both expensive and labor-intensive. Furthermore, users of safety judgment systems may need to frequently update safety rules, making fine-tuning on human-based annotation more challenging. This raises the research question: Can we detect unsafe images by querying MLLMs in a zero-shot setting using a predefined safety constitution (a set of safety rules)? Our research showed that simply querying pre-trained MLLMs does not yield satisfactory results. This lack of effectiveness stems from factors such as the subjectivity of safety rules, the complexity of lengthy constitutions, and the inherent biases in the models. To address these challenges, we propose a MLLM-based method includes objectifying safety rules, assessing the relevance between rules and images, making quick judgments based on debiased token probabilities with logically complete yet simplified precondition chains for safety rules, and conducting more in-depth reasoning with cascaded chain-of-thought processes if necessary. Experiment results demonstrate that our method is highly effective for zero-shot image safety judgment tasks.
Abstract:Reasoning is critical for large language models (LLMs) to excel in a wide range of tasks. While methods like Chain-of-Thought (CoT) reasoning enhance LLM performance by decomposing problems into intermediate steps, they also incur significant overhead in token usage, leading to increased costs. We find that the reasoning process of current LLMs is unnecessarily lengthy and it can be compressed by including a reasonable token budget in the prompt, but the choice of token budget plays a crucial role in the actual compression effectiveness. We then propose a token-budget-aware LLM reasoning framework, which dynamically estimates token budgets for different problems based on reasoning complexity and uses the estimated token budgets to guide the reasoning process. Experiments show that our method effectively reduces token costs in CoT reasoning with only a slight performance reduction, offering a practical solution to balance efficiency and accuracy in LLM reasoning. Code: https://github.com/GeniusHTX/TALE.
Abstract:Text-to-image diffusion models have shown an impressive ability to generate high-quality images from input textual descriptions. However, concerns have been raised about the potential for these models to create content that infringes on copyrights or depicts disturbing subject matter. Removing specific concepts from these models is a promising potential solution to this problem. However, existing methods for concept removal do not work well in practical but challenging scenarios where concepts need to be continuously removed. Specifically, these methods lead to poor alignment between the text prompts and the generated image after the continuous removal process. To address this issue, we propose a novel approach called CCRT that includes a designed knowledge distillation paradigm. It constrains the text-image alignment behavior during the continuous concept removal process by using a set of text prompts generated through our genetic algorithm, which employs a designed fuzzing strategy. We conduct extensive experiments involving the removal of various concepts. The results evaluated through both algorithmic metrics and human studies demonstrate that our CCRT can effectively remove the targeted concepts in a continuous manner while maintaining the high generation quality (e.g., text-image alignment) of the model.
Abstract:Bias in machine learning models has been a chronic problem, especially as these models influence decision-making in human society. In generative AI, such as Large Language Models, the impact of bias is even more profound compared to the classification models. LLMs produce realistic and human-like content that users may unconsciously trust, which could perpetuate harmful stereotypes to the uncontrolled public. It becomes particularly concerning when utilized in journalism or education. While prior studies have explored and quantified bias in individual AI models, no work has yet compared bias similarity across different LLMs. To fill this gap, we take a comprehensive look at ten open- and closed-source LLMs from four model families, assessing the extent of biases through output distribution. Using two datasets-one containing 4k questions and another with one million questions for each of the four bias dimensions -- we measure functional similarity to understand how biases manifest across models. Our findings reveal that 1) fine-tuning does not significantly alter output distributions, which would limit its ability to mitigate bias, 2) LLMs within the same family tree do not produce similar output distributions, implying that addressing bias in one model could have limited implications for others in the same family, and 3) there is a possible risk of training data information leakage, raising concerns about privacy and data security. Our analysis provides insight into LLM behavior and highlights potential risks in real-world deployment.
Abstract:Task-specific fine-tuning is essential for the deployment of large language models (LLMs), but it requires significant computational resources and time. Existing solutions have proposed coreset selection methods to improve data efficiency and reduce model training overhead, but they still have limitations: 1) Overlooking valuable samples at high pruning rates, which degrades the coreset's performance. 2) Requiring high time overhead during coreset selection to fine-tune and evaluate the target LLM. In this paper, we introduce STAFF, a speculative coreset selection method. STAFF leverages a small model from the same family as the target LLM to efficiently estimate data scores and then verifies the scores on the target LLM to accurately identify and allocate more selection budget to important regions while maintaining coverage of easy regions. We evaluate STAFF on three LLMs and three downstream tasks and show that STAFF improves the performance of SOTA methods by up to 54.3% and reduces selection overhead by up to 70.5% at different pruning rates. Furthermore, we observe that the coreset selected by STAFF at low pruning rates (i.e., 20%) can even obtain better fine-tuning performance than the full dataset.
Abstract:Backdoor attack is a severe threat to the trustworthiness of DNN-based language models. In this paper, we first extend the definition of memorization of language models from sample-wise to more fine-grained sentence element-wise (e.g., word, phrase, structure, and style), and then point out that language model backdoors are a type of element-wise memorization. Through further analysis, we find that the strength of such memorization is positively correlated to the frequency of duplicated elements in the training dataset. In conclusion, duplicated sentence elements are necessary for successful backdoor attacks. Based on this, we propose a data-centric defense. We first detect trigger candidates in training data by finding memorizable elements, i.e., duplicated elements, and then confirm real triggers by testing if the candidates can activate backdoor behaviors (i.e., malicious elements). Results show that our method outperforms state-of-the-art defenses in defending against different types of NLP backdoors.
Abstract:Despite prior safety alignment efforts, mainstream LLMs can still generate harmful and unethical content when subjected to jailbreaking attacks. Existing jailbreaking methods fall into two main categories: template-based and optimization-based methods. The former requires significant manual effort and domain knowledge, while the latter, exemplified by Greedy Coordinate Gradient (GCG), which seeks to maximize the likelihood of harmful LLM outputs through token-level optimization, also encounters several limitations: requiring white-box access, necessitating pre-constructed affirmative phrase, and suffering from low efficiency. In this paper, we present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes. Drawing inspiration from LLMs' powerful generation and optimization capabilities, we employ task prompts to translate jailbreaking goals into natural language instructions. This guides the LLM to generate adversarial suffixes for malicious queries. In particular, a harmfulness scorer provides continuous feedback, enabling LLM self-reflection and iterative optimization to autonomously and efficiently produce effective suffixes. Experimental results demonstrate that ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times. Moreover, ECLIPSE is on par with template-based methods in ASR while offering superior attack efficiency, reducing the average attack overhead by 83%.
Abstract:Deep neural networks (DNNs) have demonstrated effectiveness in various fields. However, DNNs are vulnerable to backdoor attacks, which inject a unique pattern, called trigger, into the input to cause misclassification to an attack-chosen target label. While existing works have proposed various methods to mitigate backdoor effects in poisoned models, they tend to be less effective against recent advanced attacks. In this paper, we introduce a novel post-training defense technique UNIT that can effectively eliminate backdoor effects for a variety of attacks. In specific, UNIT approximates a unique and tight activation distribution for each neuron in the model. It then proactively dispels substantially large activation values that exceed the approximated boundaries. Our experimental results demonstrate that UNIT outperforms 7 popular defense methods against 14 existing backdoor attacks, including 2 advanced attacks, using only 5\% of clean training data. UNIT is also cost efficient. The code is accessible at https://github.com/Megum1/UNIT.
Abstract:Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.