Abstract:Classical radiomic features have been designed to describe image appearance and intensity patterns. These features are directly interpretable and readily understood by radiologists. Compared with end-to-end deep learning (DL) models, lower dimensional parametric models that use such radiomic features offer enhanced interpretability but lower comparative performance in clinical tasks. In this study, we propose an approach where a standard logistic regression model performance is substantially improved by learning to select radiomic features for individual patients, from a pool of candidate features. This approach has potentials to maintain the interpretability of such approaches while offering comparable performance to DL. We also propose to expand the feature pool by generating a patient-specific healthy persona via mask-inpainting using a denoising diffusion model trained on healthy subjects. Such a pathology-free baseline feature set allows further opportunity in novel feature discovery and improved condition classification. We demonstrate our method on multiple clinical tasks of classifying general abnormalities, anterior cruciate ligament tears, and meniscus tears. Experimental results demonstrate that our approach achieved comparable or even superior performance than state-of-the-art DL approaches while offering added interpretability by using radiomic features extracted from images and supplemented by generating healthy personas. Example clinical cases are discussed in-depth to demonstrate the intepretability-enabled utilities such as human-explainable feature discovery and patient-specific location/view selection. These findings highlight the potentials of the combination of subject-specific feature selection with generative models in augmenting radiomic analysis for more interpretable decision-making. The codes are available at: https://github.com/YaxiiC/RadiomicsPersona.git
Abstract:Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
Abstract:Ultra-high-definition (UHD) image restoration often faces computational bottlenecks and information loss due to its extremely high resolution. Existing studies based on Variational Autoencoders (VAE) improve efficiency by transferring the image restoration process from pixel space to latent space. However, degraded components are inherently coupled with background elements in degraded images, both information loss during compression and information gain during compensation remain uncontrollable. These lead to restored images often exhibiting image detail loss and incomplete degradation removal. To address this issue, we propose a Controlled Differential Disentangled VAE, which utilizes Hierarchical Contrastive Disentanglement Learning and an Orthogonal Gated Projection Module to guide the VAE to actively discard easily recoverable background information while encoding more difficult-to-recover degraded information into the latent space. Additionally, we design a Complex Invertible Multiscale Fusion Network to handle background features, ensuring their consistency, and utilize a latent space restoration network to transform the degraded latent features, leading to more accurate restoration results. Extensive experimental results demonstrate that our method effectively alleviates the information loss problem in VAE models while ensuring computational efficiency, significantly improving the quality of UHD image restoration, and achieves state-of-the-art results in six UHD restoration tasks with only 1M parameters.
Abstract:Pansharpening aims to combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to produce a high-resolution multispectral (HRMS) image. Although pansharpening in the frequency domain offers clear advantages, most existing methods either continue to operate solely in the spatial domain or fail to fully exploit the benefits of the frequency domain. To address this issue, we innovatively propose Multi-Frequency Fusion Attention (MFFA), which leverages wavelet transforms to cleanly separate frequencies and enable lossless reconstruction across different frequency domains. Then, we generate Frequency-Query, Spatial-Key, and Fusion-Value based on the physical meanings represented by different features, which enables a more effective capture of specific information in the frequency domain. Additionally, we focus on the preservation of frequency features across different operations. On a broader level, our network employs a wavelet pyramid to progressively fuse information across multiple scales. Compared to previous frequency domain approaches, our network better prevents confusion and loss of different frequency features during the fusion process. Quantitative and qualitative experiments on multiple datasets demonstrate that our method outperforms existing approaches and shows significant generalization capabilities for real-world scenarios.
Abstract:The ray-tracing is often employed in urban areas for channel modeling with high accuracy but encounters a substantial computational complexity for high mobility scenarios. In this paper, we propose a novel pre-processing method for dynamic ray-tracing to reduce the computational burden in high-mobility scenarios by prepending the intersection judgment to the pre-processing stage. The proposed method generates an inter-visibility matrix that establishes visibility relationships among static objects in the environment considering the intersection judgment. Moreover, the inter-visibility matrix can be employed to create the inter-visibility table for mobile transmitters and receivers, which can improve the efficiency of constructing an image tree for the three-dimensional (3D) dynamic ray-tracing method. The results show that the proposed pre-processing method in dynamic ray-tracing has considerable time-saving compared with the traditional method while maintaining the same accuracy. The channel characteristics computed by the proposed method can well match to the channel measurements.
Abstract:Human-centric perceptions play a crucial role in real-world applications. While recent human-centric works have achieved impressive progress, these efforts are often constrained to the visual domain and lack interaction with human instructions, limiting their applicability in broader scenarios such as chatbots and sports analysis. This paper introduces Referring Human Perceptions, where a referring prompt specifies the person of interest in an image. To tackle the new task, we propose RefHCM (Referring Human-Centric Model), a unified framework to integrate a wide range of human-centric referring tasks. Specifically, RefHCM employs sequence mergers to convert raw multimodal data -- including images, text, coordinates, and parsing maps -- into semantic tokens. This standardized representation enables RefHCM to reformulate diverse human-centric referring tasks into a sequence-to-sequence paradigm, solved using a plain encoder-decoder transformer architecture. Benefiting from a unified learning strategy, RefHCM effectively facilitates knowledge transfer across tasks and exhibits unforeseen capabilities in handling complex reasoning. This work represents the first attempt to address referring human perceptions with a general-purpose framework, while simultaneously establishing a corresponding benchmark that sets new standards for the field. Extensive experiments showcase RefHCM's competitive and even superior performance across multiple human-centric referring tasks. The code and data are publicly at https://github.com/JJJYmmm/RefHCM.
Abstract:With the rapid development of multimedia, the shift from unimodal textual sentiment analysis to multimodal image-text sentiment analysis has obtained academic and industrial attention in recent years. However, multimodal sentiment analysis is affected by unimodal data bias, e.g., text sentiment is misleading due to explicit sentiment semantic, leading to low accuracy in the final sentiment classification. In this paper, we propose a novel CounterFactual Multimodal Sentiment Analysis framework (CF-MSA) using causal counterfactual inference to construct multimodal sentiment causal inference. CF-MSA mitigates the direct effect from unimodal bias and ensures heterogeneity across modalities by differentiating the treatment variables between modalities. In addition, considering the information complementarity and bias differences between modalities, we propose a new optimisation objective to effectively integrate different modalities and reduce the inherent bias from each modality. Experimental results on two public datasets, MVSA-Single and MVSA-Multiple, demonstrate that the proposed CF-MSA has superior debiasing capability and achieves new state-of-the-art performances. We will release the code and datasets to facilitate future research.
Abstract:We introduce SimulBench, a benchmark designed to evaluate large language models (LLMs) across a diverse collection of creative simulation scenarios, such as acting as a Linux terminal or playing text games with users. While these simulation tasks serve as effective measures of an LLM's general intelligence, they are seldom incorporated into existing benchmarks. A major challenge is to develop an evaluation framework for testing different LLMs fairly while preserving the multi-round interactive nature of simulation tasks between users and AI. To tackle this issue, we suggest using a fixed LLM as a user agent to engage with an LLM to collect dialogues first under different tasks. Then, challenging dialogue scripts are extracted for evaluating different target LLMs. To facilitate automatic assessment on \DataName{}, GPT-4 is employed as the evaluator, tasked with reviewing the quality of the final response generated by the target LLMs given multi-turn dialogue scripts. Our comprehensive experiments indicate that these simulation tasks continue to pose a significant challenge with their unique natures and show the gap between proprietary models and the most advanced open LLMs. For example, GPT-4-turbo outperforms LLaMA-3-70b-Chat on 18.55\% more cases.
Abstract:The recently proposed Segment Anything Model (SAM) is a general tool for image segmentation, but it requires additional adaptation and careful fine-tuning for medical image segmentation, especially for small, irregularly-shaped, and boundary-ambiguous anatomical structures such as the knee cartilage that is of interest in this work. Repaired cartilage, after certain surgical procedures, exhibits imaging patterns unseen to pre-training, posing further challenges for using models like SAM with or without general-purpose fine-tuning. To address this, we propose a novel registration-based prompt engineering framework for medical image segmentation using SAM. This approach utilises established image registration algorithms to align the new image (to-be-segmented) and a small number of reference images, without requiring segmentation labels. The spatial transformations generated by registration align either the new image or pre-defined point-based prompts, before using them as input to SAM. This strategy, requiring as few as five reference images with defined point prompts, effectively prompts SAM for inference on new images, without needing any segmentation labels. Evaluation of MR images from patients who received cartilage stem cell therapy yielded Dice scores of 0.89, 0.87, 0.53, and 0.52 for segmenting femur, tibia, femoral- and tibial cartilages, respectively. This outperforms atlas-based label fusion and is comparable to supervised nnUNet, an upper-bound fair baseline in this application, both of which require full segmentation labels for reference samples. The codes are available at: https://github.com/chrissyinreallife/KneeSegmentWithSAM.git
Abstract:Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model's long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for long-form factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality. To do so, we balance the percentage of supported facts in a response (precision) with the percentage of provided facts relative to a hyperparameter representing a user's preferred response length (recall). Empirically, we demonstrate that LLM agents can outperform crowdsourced human annotators - on a set of ~16k individual facts, SAFE agrees with crowdsourced human annotators 72% of the time, and on a random subset of 100 disagreement cases, SAFE wins 76% of the time. At the same time, SAFE is more than 20 times cheaper than human annotators. We also benchmark thirteen language models on LongFact across four model families (Gemini, GPT, Claude, and PaLM-2), finding that larger language models generally achieve better long-form factuality. LongFact, SAFE, and all experimental code are available at https://github.com/google-deepmind/long-form-factuality.