Abstract:We propose a general framework for the Discontinuous Galerkin-induced Neural Network (DGNet) inspired by the Interior Penalty Discontinuous Galerkin Method (IPDGM). In this approach, the trial space consists of piecewise neural network space defined over the computational domain, while the test function space is composed of piecewise polynomials. We demonstrate the advantages of DGNet in terms of accuracy and training efficiency across several numerical examples, including stationary and time-dependent problems. Specifically, DGNet easily handles high perturbations, discontinuous solutions, and complex geometric domains.
Abstract:Image deblurring remains a central research area within image processing, critical for its role in enhancing image quality and facilitating clearer visual representations across diverse applications. This paper tackles the optimization problem of image deblurring, assuming a known blurring kernel. We introduce an improved optimal proximal gradient algorithm (IOptISTA), which builds upon the optimal gradient method and a weighting matrix, to efficiently address the non-blind image deblurring problem. Based on two regularization cases, namely the $l_1$ norm and total variation norm, we perform numerical experiments to assess the performance of our proposed algorithm. The results indicate that our algorithm yields enhanced PSNR and SSIM values, as well as a reduced tolerance, compared to existing methods.