Abstract:Traditional Remote Sensing Foundation models (RSFMs) are pre-trained with a data-centralized paradigm, through self-supervision on large-scale curated remote sensing data. For each institution, however, pre-training RSFMs with limited data in a standalone manner may lead to suboptimal performance, while aggregating remote sensing data from multiple institutions for centralized pre-training raises privacy concerns. Seeking for collaboration is a promising solution to resolve this dilemma, where multiple institutions can collaboratively train RSFMs without sharing private data. In this paper, we propose a novel privacy-preserved pre-training framework (FedSense), which enables multiple institutions to collaboratively train RSFMs without sharing private data. However, it is a non-trivial task hindered by a vicious cycle, which results from model drift by remote sensing data heterogeneity and high communication overhead. To break this vicious cycle, we introduce Federated Mutual-guidance Learning. Specifically, we propose a Server-to-Clients Guidance (SCG) mechanism to guide clients updates towards global-flatness optimal solutions. Additionally, we propose a Clients-to-Server Guidance (CSG) mechanism to inject local knowledge into the server by low-bit communication. Extensive experiments on four downstream tasks demonstrate the effectiveness of our FedSense in both full-precision and communication-reduced scenarios, showcasing remarkable communication efficiency and performance gains.
Abstract:Multi-agent reinforcement learning (MARL) has shown significant potential in traffic signal control (TSC). However, current MARL-based methods often suffer from insufficient generalization due to the fixed traffic patterns and road network conditions used during training. This limitation results in poor adaptability to new traffic scenarios, leading to high retraining costs and complex deployment. To address this challenge, we propose two algorithms: PLight and PRLight. PLight employs a model-based reinforcement learning approach, pretraining control policies and environment models using predefined source-domain traffic scenarios. The environment model predicts the state transitions, which facilitates the comparison of environmental features. PRLight further enhances adaptability by adaptively selecting pre-trained PLight agents based on the similarity between the source and target domains to accelerate the learning process in the target domain. We evaluated the algorithms through two transfer settings: (1) adaptability to different traffic scenarios within the same road network, and (2) generalization across different road networks. The results show that PRLight significantly reduces the adaptation time compared to learning from scratch in new TSC scenarios, achieving optimal performance using similarities between available and target scenarios.
Abstract:Recently, with the development of Multi-agent reinforcement learning (MARL), adaptive traffic signal control (ATSC) has achieved satisfactory results. In traffic scenarios with multiple intersections, MARL treats each intersection as an agent and optimizes traffic signal control strategies through learning and real-time decision-making. Considering that observation distributions of intersections might be different in real-world scenarios, shared parameter methods might lack diversity and thus lead to high generalization requirements in the shared-policy network. A typical solution is to increase the size of network parameters. However, simply increasing the scale of the network does not necessarily improve policy generalization, which is validated in our experiments. Accordingly, an approach that considers both the personalization of intersections and the efficiency of parameter sharing is required. To this end, we propose Hyper-Action Multi-Head Proximal Policy Optimization (HAMH-PPO), a Centralized Training with Decentralized Execution (CTDE) MARL method that utilizes a shared PPO policy network to deliver personalized policies for intersections with non-iid observation distributions. The centralized critic in HAMH-PPO uses graph attention units to calculate the graph representations of all intersections and outputs a set of value estimates with multiple output heads for each intersection. The decentralized execution actor takes the local observation history as input and output distributions of action as well as a so-called hyper-action to balance the multiple values estimated from the centralized critic to further guide the updating of TSC policies. The combination of hyper-action and multi-head values enables multiple agents to share a single actor-critic while achieving personalized policies.
Abstract:Speech-to-text translation (ST) is a cross-modal task that involves converting spoken language into text in a different language. Previous research primarily focused on enhancing speech translation by facilitating knowledge transfer from machine translation, exploring various methods to bridge the gap between speech and text modalities. Despite substantial progress made, factors in speech that are not relevant to translation content, such as timbre and rhythm, often limit the efficiency of knowledge transfer. In this paper, we conceptualize speech representation as a combination of content-agnostic and content-relevant factors. We examine the impact of content-agnostic factors on translation performance through preliminary experiments and observe a significant performance deterioration when content-agnostic perturbations are introduced to speech signals. To address this issue, we propose a \textbf{S}peech \textbf{R}epresentation \textbf{P}urification with \textbf{S}upervision \textbf{E}nhancement (SRPSE) framework, which excludes the content-agnostic components within speech representations to mitigate their negative impact on ST. Experiments on MuST-C and CoVoST-2 datasets demonstrate that SRPSE significantly improves translation performance across all translation directions in three settings and achieves preeminent performance under a \textit{transcript-free} setting.
Abstract:We present DeSiRe-GS, a self-supervised gaussian splatting representation, enabling effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios. Our approach employs a two-stage optimization pipeline of dynamic street Gaussians. In the first stage, we extract 2D motion masks based on the observation that 3D Gaussian Splatting inherently can reconstruct only the static regions in dynamic environments. These extracted 2D motion priors are then mapped into the Gaussian space in a differentiable manner, leveraging an efficient formulation of dynamic Gaussians in the second stage. Combined with the introduced geometric regularizations, our method are able to address the over-fitting issues caused by data sparsity in autonomous driving, reconstructing physically plausible Gaussians that align with object surfaces rather than floating in air. Furthermore, we introduce temporal cross-view consistency to ensure coherence across time and viewpoints, resulting in high-quality surface reconstruction. Comprehensive experiments demonstrate the efficiency and effectiveness of DeSiRe-GS, surpassing prior self-supervised arts and achieving accuracy comparable to methods relying on external 3D bounding box annotations. Code is available at \url{https://github.com/chengweialan/DeSiRe-GS}
Abstract:Machine learning prediction of organic materials properties is an efficient virtual screening method ahead of more expensive screening methods. However, this approach has suffered from insufficient labeled data on organic materials to train state-of-the-art machine learning models. In this study, we demonstrate that drug-like small molecule and chemical reaction databases can be used to pretrain the BERT model for the virtual screening of organic materials. Among the BERT models fine-tuned by five virtual screening tasks on organic materials, the USPTO-SMILES pretrained BERT model had R2 > 0.90 for two tasks and R2 > 0.82 for one, which was generally superior to the same models pretrained by the small molecule or organic materials databases, as well as to the other three traditional machine learning models trained directly on the virtual screening task data. The superior performance of the USPTO-SMILES pretrained BERT model is due to the greater variety of organic building blocks in the USPTO database and the broader coverage of the chemical space. The even better performance of the BERT model pretrained externally from a chemical reaction database with additional sources of chemical reactions strengthens our proof of concept that transfer learning across different chemical domains is practical for the virtual screening of organic materials.
Abstract:The adaptive traffic signal control (ATSC) problem can be modeled as a multiagent cooperative game among urban intersections, where intersections cooperate to optimize their common goal. Recently, reinforcement learning (RL) has achieved marked successes in managing sequential decision making problems, which motivates us to apply RL in the ASTC problem. Here we use independent reinforcement learning (IRL) to solve a complex traffic cooperative control problem in this study. One of the largest challenges of this problem is that the observation information of intersection is typically partially observable, which limits the learning performance of IRL algorithms. To this, we model the traffic control problem as a partially observable weak cooperative traffic model (PO-WCTM) to optimize the overall traffic situation of a group of intersections. Different from a traditional IRL task that averages the returns of all agents in fully cooperative games, the learning goal of each intersection in PO-WCTM is to reduce the cooperative difficulty of learning, which is also consistent with the traffic environment hypothesis. We also propose an IRL algorithm called Cooperative Important Lenient Double DQN (CIL-DDQN), which extends Double DQN (DDQN) algorithm using two mechanisms: the forgetful experience mechanism and the lenient weight training mechanism. The former mechanism decreases the importance of experiences stored in the experience reply buffer, which deals with the problem of experience failure caused by the strategy change of other agents. The latter mechanism increases the weight experiences with high estimation and `leniently' trains the DDQN neural network, which improves the probability of the selection of cooperative joint strategies. Experimental results show that CIL-DDQN outperforms other methods in almost all performance indicators of the traffic control problem.
Abstract:Transformer based knowledge tracing model is an extensively studied problem in the field of computer-aided education. By integrating temporal features into the encoder-decoder structure, transformers can processes the exercise information and student response information in a natural way. However, current state-of-the-art transformer-based variants still share two limitations. First, extremely long temporal features cannot well handled as the complexity of self-attention mechanism is O(n2). Second, existing approaches track the knowledge drifts under fixed a window size, without considering different temporal-ranges. To conquer these problems, we propose MUSE, which is equipped with multi-scale temporal sensor unit, that takes either local or global temporal features into consideration. The proposed model is capable to capture the dynamic changes in users knowledge states at different temporal-ranges, and provides an efficient and powerful way to combine local and global features to make predictions. Our method won the 5-th place over 3,395 teams in the Riiid AIEd Challenge 2020.
Abstract:Arbitrary text appearance poses a great challenge in scene text recognition tasks. Existing works mostly handle with the problem in consideration of the shape distortion, including perspective distortions, line curvature or other style variations. Therefore, methods based on spatial transformers are extensively studied. However, chromatic difficulties in complex scenes have not been paid much attention on. In this work, we introduce a new learnable geometric-unrelated module, the Structure-Preserving Inner Offset Network (SPIN), which allows the color manipulation of source data within the network. This differentiable module can be inserted before any recognition architecture to ease the downstream tasks, giving neural networks the ability to actively transform input intensity rather than the existing spatial rectification. It can also serve as a complementary module to known spatial transformations and work in both independent and collaborative ways with them. Extensive experiments show that the use of SPIN results in a significant improvement on multiple text recognition benchmarks compared to the state-of-the-arts.
Abstract:Temporal action localization is an important yet challenging research topic due to its various applications. Since the frame-level or segment-level annotations of untrimmed videos require amounts of labor expenditure, studies on the weakly-supervised action detection have been springing up. However, most of existing frameworks rely on Class Activation Sequence (CAS) to localize actions by minimizing the video-level classification loss, which exploits the most discriminative parts of actions but ignores the minor regions. In this paper, we propose a novel weakly-supervised framework by adversarial learning of two modules for eliminating such demerits. Specifically, the first module is designed as a well-designed Seeded Sequence Growing (SSG) Network for progressively extending seed regions (namely the highly reliable regions initialized by a CAS-based framework) to their expected boundaries. The second module is a specific classifier for mining trivial or incomplete action regions, which is trained on the shared features after erasing the seeded regions activated by SSG. In this way, a whole network composed of these two modules can be trained in an adversarial manner. The goal of the adversary is to mine features that are difficult for the action classifier. That is, erasion from SSG will force the classifier to discover minor or even new action regions on the input feature sequence, and the classifier will drive the seeds to grow, alternately. At last, we could obtain the action locations and categories from the well-trained SSG and the classifier. Extensive experiments on two public benchmarks THUMOS'14 and ActivityNet1.3 demonstrate the impressive performance of our proposed method compared with the state-of-the-arts.