Abstract:Large Language Models (LLMs) exhibit strong contextual understanding and remarkable multi-task performance. Therefore, researchers have been seeking to integrate LLMs in the broad sense of Spoken Language Understanding (SLU) field. Different from the traditional method of cascading LLMs to process text generated by Automatic Speech Recognition(ASR), new efforts have focused on designing architectures centered around Audio Feature Extraction - Multimodal Information Fusion - LLM Inference(Speech LLMs). This approach enables richer audio feature extraction while simultaneously facilitating end-to-end fusion of audio and text modalities, thereby achieving deeper understanding and reasoning from audio data. This paper elucidates the development of Speech LLMs, offering an in-depth analysis of system architectures and training strategies. Through extensive research and a series of targeted experiments, the paper assesses Speech LLMs' advancements in Rich Audio Transcription and its potential for Cross-task Integration within the SLU field. Additionally, it indicates key challenges uncovered through experimentation, such as the Dormancy of LLMs under certain conditions. The paper further delves into the training strategies for Speech LLMs, proposing potential solutions based on these findings, and offering valuable insights and references for future research in this domain, as well as LLM applications in multimodal contexts.
Abstract:We introduce romanization encoding for script-heavy languages to optimize multilingual and code-switching Automatic Speech Recognition (ASR) systems. By adopting romanization encoding alongside a balanced concatenated tokenizer within a FastConformer-RNNT framework equipped with a Roman2Char module, we significantly reduce vocabulary and output dimensions, enabling larger training batches and reduced memory consumption. Our method decouples acoustic modeling and language modeling, enhancing the flexibility and adaptability of the system. In our study, applying this method to Mandarin-English ASR resulted in a remarkable 63.51% vocabulary reduction and notable performance gains of 13.72% and 15.03% on SEAME code-switching benchmarks. Ablation studies on Mandarin-Korean and Mandarin-Japanese highlight our method's strong capability to address the complexities of other script-heavy languages, paving the way for more versatile and effective multilingual ASR systems.
Abstract:Code-switching (CS) phenomenon occurs when words or phrases from different languages are alternated in a single sentence. Due to data scarcity, building an effective CS Automatic Speech Recognition (ASR) system remains challenging. In this paper, we propose to enhance CS-ASR systems by utilizing rich unsupervised monolingual speech data within a semi-supervised learning framework, particularly when access to CS data is limited. To achieve this, we establish a general paradigm for applying noisy student training (NST) to the CS-ASR task. Specifically, we introduce the LLM-Filter, which leverages well-designed prompt templates to activate the correction capability of large language models (LLMs) for monolingual data selection and pseudo-labels refinement during NST. Our experiments on the supervised ASRU-CS and unsupervised AISHELL-2 and LibriSpeech datasets show that our method not only achieves significant improvements over supervised and semi-supervised learning baselines for the CS task, but also attains better performance compared with the fully-supervised oracle upper-bound on the CS English part. Additionally, we further investigate the influence of accent on AESRC dataset and demonstrate that our method can get achieve additional benefits when the monolingual data contains relevant linguistic characteristic.
Abstract:For noisy environments, ensuring the robustness of keyword spotting (KWS) systems is essential. While much research has focused on noisy KWS, less attention has been paid to multi-talker mixed speech scenarios. Unlike the usual cocktail party problem where multi-talker speech is separated using speaker clues, the key challenge here is to extract the target speech for KWS based on text clues. To address it, this paper proposes a novel Text-aware Permutation Determinization Training method for multi-talker KWS with a clue-based Speech Separation front-end (TPDT-SS). Our research highlights the critical role of SS front-ends and shows that incorporating keyword-specific clues into these models can greatly enhance the effectiveness. TPDT-SS shows remarkable success in addressing permutation problems in mixed keyword speech, thereby greatly boosting the performance of the backend. Additionally, fine-tuning our system on unseen mixed speech results in further performance improvement.
Abstract:Designing an efficient keyword spotting (KWS) system that delivers exceptional performance on resource-constrained edge devices has long been a subject of significant attention. Existing KWS search algorithms typically follow a frame-synchronous approach, where search decisions are made repeatedly at each frame despite the fact that most frames are keyword-irrelevant. In this paper, we propose TDT-KWS, which leverages token-and-duration Transducers (TDT) for KWS tasks. We also propose a novel KWS task-specific decoding algorithm for Transducer-based models, which supports highly effective frame-asynchronous keyword search in streaming speech scenarios. With evaluations conducted on both the public Hey Snips and self-constructed LibriKWS-20 datasets, our proposed KWS-decoding algorithm produces more accurate results than conventional ASR decoding algorithms. Additionally, TDT-KWS achieves on-par or better wake word detection performance than both RNN-T and traditional TDT-ASR systems while achieving significant inference speed-up. Furthermore, experiments show that TDT-KWS is more robust to noisy environments compared to RNN-T KWS.
Abstract:Customizable keyword spotting (KWS) in continuous speech has attracted increasing attention due to its real-world application potential. While contrastive learning (CL) has been widely used to extract keyword representations, previous CL approaches all operate on pre-segmented isolated words and employ only audio-text representations matching strategy. However, for KWS in continuous speech, co-articulation and streaming word segmentation can easily yield similar audio patterns for different texts, which may consequently trigger false alarms. To address this issue, we propose a novel CL with Audio Discrimination (CLAD) approach to learning keyword representation with both audio-text matching and audio-audio discrimination ability. Here, an InfoNCE loss considering both audio-audio and audio-text CL data pairs is employed for each sliding window during training. Evaluations on the open-source LibriPhrase dataset show that the use of sliding-window level InfoNCE loss yields comparable performance compared to previous CL approaches. Furthermore, experiments on the continuous speech dataset LibriSpeech demonstrate that, by incorporating audio discrimination, CLAD achieves significant performance gain over CL without audio discrimination. Meanwhile, compared to two-stage KWS approaches, the end-to-end KWS with CLAD achieves not only better performance, but also significant speed-up.
Abstract:The proliferation of the Internet of Things (IoT) and widespread use of devices with sensing, computing, and communication capabilities have motivated intelligent applications empowered by artificial intelligence. The classical artificial intelligence algorithms require centralized data collection and processing which are challenging in realistic intelligent IoT applications due to growing data privacy concerns and distributed datasets. Federated Learning (FL) has emerged as a distributed privacy-preserving learning framework that enables IoT devices to train global model through sharing model parameters. However, inefficiency due to frequent parameters transmissions significantly reduce FL performance. Existing acceleration algorithms consist of two main type including local update considering trade-offs between communication and computation and parameter compression considering trade-offs between communication and precision. Jointly considering these two trade-offs and adaptively balancing their impacts on convergence have remained unresolved. To solve the problem, this paper proposes a novel efficient adaptive federated optimization (EAFO) algorithm to improve efficiency of FL, which minimizes the learning error via jointly considering two variables including local update and parameter compression and enables FL to adaptively adjust the two variables and balance trade-offs among computation, communication and precision. The experiment results illustrate that comparing with state-of-the-art algorithms, the proposed EAFO can achieve higher accuracies faster.