Abstract:The correspondence between input text and the generated image exhibits opacity, wherein minor textual modifications can induce substantial deviations in the generated image. While, text embedding, as the pivotal intermediary between text and images, remains relatively underexplored. In this paper, we address this research gap by delving into the text embedding space, unleashing its capacity for controllable image editing and explicable semantic direction attributes within a learning-free framework. Specifically, we identify two critical insights regarding the importance of per-word embedding and their contextual correlations within text embedding, providing instructive principles for learning-free image editing. Additionally, we find that text embedding inherently possesses diverse semantic potentials, and further reveal this property through the lens of singular value decomposition (SVD). These uncovered properties offer practical utility for image editing and semantic discovery. More importantly, we expect the in-depth analyses and findings of the text embedding can enhance the understanding of text-to-image diffusion models.
Abstract:Diffusion models have demonstrated compelling generation quality by optimizing the variational lower bound through a simple denoising score matching loss. In this paper, we provide theoretical evidence that the prevailing practice of using a constant loss weight strategy in diffusion models leads to biased estimation during the training phase. Simply optimizing the denoising network to predict Gaussian noise with constant weighting may hinder precise estimations of original images. To address the issue, we propose an elegant and effective weighting strategy grounded in the theoretically unbiased principle. Moreover, we conduct a comprehensive and systematic exploration to dissect the inherent bias problem deriving from constant weighting loss from the perspectives of its existence, impact and reasons. These analyses are expected to advance our understanding and demystify the inner workings of diffusion models. Through empirical evaluation, we demonstrate that our proposed debiased estimation method significantly enhances sample quality without the reliance on complex techniques, and exhibits improved efficiency compared to the baseline method both in training and sampling processes.
Abstract:Image dehazing is quite challenging in dense-haze scenarios, where quite less original information remains in the hazy image. Though previous methods have made marvelous progress, they still suffer from information loss in content and color in dense-haze scenarios. The recently emerged Denoising Diffusion Probabilistic Model (DDPM) exhibits strong generation ability, showing potential for solving this problem. However, DDPM fails to consider the physics property of dehazing task, limiting its information completion capacity. In this work, we propose DehazeDDPM: A DDPM-based and physics-aware image dehazing framework that applies to complex hazy scenarios. Specifically, DehazeDDPM works in two stages. The former stage physically models the dehazing task with the Atmospheric Scattering Model (ASM), pulling the distribution closer to the clear data and endowing DehazeDDPM with fog-aware ability. The latter stage exploits the strong generation ability of DDPM to compensate for the haze-induced huge information loss, by working in conjunction with the physical modelling. Extensive experiments demonstrate that our method attains state-of-the-art performance on both synthetic and real-world hazy datasets.
Abstract:Existing convolutional neural networks widely adopt spatial down-/up-sampling for multi-scale modeling. However, spatial up-sampling operators (\emph{e.g.}, interpolation, transposed convolution, and un-pooling) heavily depend on local pixel attention, incapably exploring the global dependency. In contrast, the Fourier domain obeys the nature of global modeling according to the spectral convolution theorem. Unlike the spatial domain that performs up-sampling with the property of local similarity, up-sampling in the Fourier domain is more challenging as it does not follow such a local property. In this study, we propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues. We revisit the relationships between spatial and Fourier domains and reveal the transform rules on the features of different resolutions in the Fourier domain, which provide key insights for FourierUp's designs. FourierUp as a generic operator consists of three key components: 2D discrete Fourier transform, Fourier dimension increase rules, and 2D inverse Fourier transform, which can be directly integrated with existing networks. Extensive experiments across multiple computer vision tasks, including object detection, image segmentation, image de-raining, image dehazing, and guided image super-resolution, demonstrate the consistent performance gains obtained by introducing our FourierUp.
Abstract:Deep learning-based source dehazing methods trained on synthetic datasets have achieved remarkable performance but suffer from dramatic performance degradation on real hazy images due to domain shift. Although certain Domain Adaptation (DA) dehazing methods have been presented, they inevitably require access to the source dataset to reduce the gap between the source synthetic and target real domains. To address these issues, we present a novel Source-Free Unsupervised Domain Adaptation (SFUDA) image dehazing paradigm, in which only a well-trained source model and an unlabeled target real hazy dataset are available. Specifically, we devise the Domain Representation Normalization (DRN) module to make the representation of real hazy domain features match that of the synthetic domain to bridge the gaps. With our plug-and-play DRN module, unlabeled real hazy images can adapt existing well-trained source networks. Besides, the unsupervised losses are applied to guide the learning of the DRN module, which consists of frequency losses and physical prior losses. Frequency losses provide structure and style constraints, while the prior loss explores the inherent statistic property of haze-free images. Equipped with our DRN module and unsupervised loss, existing source dehazing models are able to dehaze unlabeled real hazy images. Extensive experiments on multiple baselines demonstrate the validity and superiority of our method visually and quantitatively.