Abstract:Existing image super-resolution (SR) techniques often fail to generalize effectively in complex real-world settings due to the significant divergence between training data and practical scenarios. To address this challenge, previous efforts have either manually simulated intricate physical-based degradations or utilized learning-based techniques, yet these approaches remain inadequate for producing large-scale, realistic, and diverse data simultaneously. In this paper, we introduce a novel Realistic Decoupled Data Generator (RealDGen), an unsupervised learning data generation framework designed for real-world super-resolution. We meticulously develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model to create realistic low-resolution images from unpaired real LR and HR images. Extensive experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations, significantly advancing the performance of popular SR models on various real-world benchmarks.
Abstract:Hybrid Event-Based Vision Sensor (HybridEVS) is a novel sensor integrating traditional frame-based and event-based sensors, offering substantial benefits for applications requiring low-light, high dynamic range, and low-latency environments, such as smartphones and wearable devices. Despite its potential, the lack of Image signal processing (ISP) pipeline specifically designed for HybridEVS poses a significant challenge. To address this challenge, in this study, we propose a coarse-to-fine framework named DemosaicFormer which comprises coarse demosaicing and pixel correction. Coarse demosaicing network is designed to produce a preliminary high-quality estimate of the RGB image from the HybridEVS raw data while the pixel correction network enhances the performance of image restoration and mitigates the impact of defective pixels. Our key innovation is the design of a Multi-Scale Gating Module (MSGM) applying the integration of cross-scale features, which allows feature information to flow between different scales. Additionally, the adoption of progressive training and data augmentation strategies further improves model's robustness and effectiveness. Experimental results show superior performance against the existing methods both qualitatively and visually, and our DemosaicFormer achieves the best performance in terms of all the evaluation metrics in the MIPI 2024 challenge on Demosaic for Hybridevs Camera. The code is available at https://github.com/QUEAHREN/DemosaicFormer.
Abstract:Image deraining aims to remove rain streaks from rainy images and restore clear backgrounds. Currently, some research that employs the Fourier transform has proved to be effective for image deraining, due to it acting as an effective frequency prior for capturing rain streaks. However, despite there exists dependency of low frequency and high frequency in images, these Fourier-based methods rarely exploit the correlation of different frequencies for conjuncting their learning procedures, limiting the full utilization of frequency information for image deraining. Alternatively, the recently emerged Mamba technique depicts its effectiveness and efficiency for modeling correlation in various domains (e.g., spatial, temporal), and we argue that introducing Mamba into its unexplored Fourier spaces to correlate different frequencies would help improve image deraining. This motivates us to propose a new framework termed FourierMamba, which performs image deraining with Mamba in the Fourier space. Owning to the unique arrangement of frequency orders in Fourier space, the core of FourierMamba lies in the scanning encoding of different frequencies, where the low-high frequency order formats exhibit differently in the spatial dimension (unarranged in axis) and channel dimension (arranged in axis). Therefore, we design FourierMamba that correlates Fourier space information in the spatial and channel dimensions with distinct designs. Specifically, in the spatial dimension Fourier space, we introduce the zigzag coding to scan the frequencies to rearrange the orders from low to high frequencies, thereby orderly correlating the connections between frequencies; in the channel dimension Fourier space with arranged orders of frequencies in axis, we can directly use Mamba to perform frequency correlation and improve the channel information representation.
Abstract:Real-SR endeavors to produce high-resolution images with rich details while mitigating the impact of multiple degradation factors. Although existing methods have achieved impressive achievements in detail recovery, they still fall short when addressing regions with complex gradient arrangements due to the intensity-based linear weighting feature extraction manner. Moreover, the stochastic artifacts introduced by degradation cues during the imaging process in real LR increase the disorder of the overall image details, further complicating the perception of intrinsic gradient arrangement. To address these challenges, we innovatively introduce kernel-wise differential operations within the convolutional kernel and develop several learnable directional gradient convolutions. These convolutions are integrated in parallel with a novel linear weighting mechanism to form an Adaptive Directional Gradient Convolution (DGConv), which adaptively weights and fuses the basic directional gradients to improve the gradient arrangement perception capability for both regular and irregular textures. Coupled with DGConv, we further devise a novel equivalent parameter fusion method for DGConv that maintains its rich representational capabilities while keeping computational costs consistent with a single Vanilla Convolution (VConv), enabling DGConv to improve the performance of existing super-resolution networks without incurring additional computational expenses. To better leverage the superiority of DGConv, we further develop an Adaptive Information Interaction Block (AIIBlock) to adeptly balance the enhancement of texture and contrast while meticulously investigating the interdependencies, culminating in the creation of a DGPNet for Real-SR through simple stacking. Comparative results with 15 SOTA methods across three public datasets underscore the effectiveness and efficiency of our proposed approach.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
Abstract:Consistency Models (CMs) have showed a promise in creating visual content efficiently and with high quality. However, the way to add new conditional controls to the pretrained CMs has not been explored. In this technical report, we consider alternative strategies for adding ControlNet-like conditional control to CMs and present three significant findings. 1) ControlNet trained for diffusion models (DMs) can be directly applied to CMs for high-level semantic controls but struggles with low-level detail and realism control. 2) CMs serve as an independent class of generative models, based on which ControlNet can be trained from scratch using Consistency Training proposed by Song et al. 3) A lightweight adapter can be jointly optimized under multiple conditions through Consistency Training, allowing for the swift transfer of DMs-based ControlNet to CMs. We study these three solutions across various conditional controls, including edge, depth, human pose, low-resolution image and masked image with text-to-image latent consistency models.
Abstract:Adverse weather image restoration strives to recover clear images from those affected by various weather types, such as rain, haze, and snow. Each weather type calls for a tailored degradation removal approach due to its unique impact on images. Conversely, content reconstruction can employ a uniform approach, as the underlying image content remains consistent. Although previous techniques can handle multiple weather types within a single network, they neglect the crucial distinction between these two processes, limiting the quality of restored images. This work introduces a novel adverse weather image restoration method, called DDCNet, which decouples the degradation removal and content reconstruction process at the feature level based on their channel statistics. Specifically, we exploit the unique advantages of the Fourier transform in both these two processes: (1) the degradation information is mainly located in the amplitude component of the Fourier domain, and (2) the Fourier domain contains global information. The former facilitates channel-dependent degradation removal operation, allowing the network to tailor responses to various adverse weather types; the latter, by integrating Fourier's global properties into channel-independent content features, enhances network capacity for consistent global content reconstruction. We further augment the degradation removal process with a degradation mapping loss function. Extensive experiments demonstrate our method achieves state-of-the-art performance in multiple adverse weather removal benchmarks.
Abstract:This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions, examining it from two angles: the collection pipeline of real reflection pairs and the perception of real reflection locations. We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios and incurs reduced costs in collecting large-scale aligned reflection pairs. In the process, we develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW). RRW contains over 14,950 high-resolution real-world reflection pairs, a dataset forty-five times larger than its predecessors. Regarding perception of reflection locations, we identify that numerous virtual reflection objects visible in reflection images are not present in the corresponding ground-truth images. This observation, drawn from the aligned pairs, leads us to conceive the Maximum Reflection Filter (MaxRF). The MaxRF could accurately and explicitly characterize reflection locations from pairs of images. Building upon this, we design a reflection location-aware cascaded framework, specifically tailored for SIRR. Powered by these innovative techniques, our solution achieves superior performance than current leading methods across multiple real-world benchmarks. Codes and datasets will be publicly available.
Abstract:Deep learning provides a new avenue for image restoration, which demands a delicate balance between fine-grained details and high-level contextualized information during recovering the latent clear image. In practice, however, existing methods empirically construct encapsulated end-to-end mapping networks without deepening into the rationality, and neglect the intrinsic prior knowledge of restoration task. To solve the above problems, inspired by Taylor's Approximations, we unfold Taylor's Formula to construct a novel framework for image restoration. We find the main part and the derivative part of Taylor's Approximations take the same effect as the two competing goals of high-level contextualized information and spatial details of image restoration respectively. Specifically, our framework consists of two steps, correspondingly responsible for the mapping and derivative functions. The former first learns the high-level contextualized information and the later combines it with the degraded input to progressively recover local high-order spatial details. Our proposed framework is orthogonal to existing methods and thus can be easily integrated with them for further improvement, and extensive experiments demonstrate the effectiveness and scalability of our proposed framework.
Abstract:To improve the quality of underwater images, various kinds of underwater image enhancement (UIE) operators have been proposed during the past few years. However, the lack of effective objective evaluation methods limits the further development of UIE techniques. In this paper, we propose a novel rank learning guided no-reference quality assessment method for UIE. Our approach, termed Twice Mixing, is motivated by the observation that a mid-quality image can be generated by mixing a high-quality image with its low-quality version. Typical mixup algorithms linearly interpolate a given pair of input data. However, the human visual system is non-uniformity and non-linear in processing images. Therefore, instead of directly training a deep neural network based on the mixed images and their absolute scores calculated by linear combinations, we propose to train a Siamese Network to learn their quality rankings. Twice Mixing is trained based on an elaborately formulated self-supervision mechanism. Specifically, before each iteration, we randomly generate two mixing ratios which will be employed for both generating virtual images and guiding the network training. In the test phase, a single branch of the network is extracted to predict the quality rankings of different UIE outputs. We conduct extensive experiments on both synthetic and real-world datasets. Experimental results demonstrate that our approach outperforms the previous methods significantly.