Abstract:Spatio-Temporal predictive Learning is a self-supervised learning paradigm that enables models to identify spatial and temporal patterns by predicting future frames based on past frames. Traditional methods, which use recurrent neural networks to capture temporal patterns, have proven their effectiveness but come with high system complexity and computational demand. Convolutions could offer a more efficient alternative but are limited by their characteristic of treating all previous frames equally, resulting in poor temporal characterization, and by their local receptive field, limiting the capacity to capture distant correlations among frames. In this paper, we propose STLight, a novel method for spatio-temporal learning that relies solely on channel-wise and depth-wise convolutions as learnable layers. STLight overcomes the limitations of traditional convolutional approaches by rearranging spatial and temporal dimensions together, using a single convolution to mix both types of features into a comprehensive spatio-temporal patch representation. This representation is then processed in a purely convolutional framework, capable of focusing simultaneously on the interaction among near and distant patches, and subsequently allowing for efficient reconstruction of the predicted frames. Our architecture achieves state-of-the-art performance on STL benchmarks across different datasets and settings, while significantly improving computational efficiency in terms of parameters and computational FLOPs. The code is publicly available
Abstract:Colorway creation is the task of generating textile samples in alternate color variations maintaining an underlying pattern. The individuation of a suitable color palette for a colorway is a complex creative task, responding to client and market needs, stylistic and cultural specifications, and mood. We introduce a modification of this task, the "generative colorway" creation, that includes minimal shape modifications, and propose a framework, "ColorwAI", to tackle this task using color disentanglement on StyleGAN and Diffusion. We introduce a variation of the InterfaceGAN method for supervised disentanglement, ShapleyVec. We use Shapley values to subselect a few dimensions of the detected latent direction. Moreover, we introduce a general framework to adopt common disentanglement methods on any architecture with a semantic latent space and test it on Diffusion and GANs. We interpret the color representations within the models' latent space. We find StyleGAN's W space to be the most aligned with human notions of color. Finally, we suggest that disentanglement can solicit a creative system for colorway creation, and evaluate it through expert questionnaires and creativity theory.