Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.
Abstract:Diffusion models and multi-scale features are essential components in semantic segmentation tasks that deal with remote-sensing images. They contribute to improved segmentation boundaries and offer significant contextual information. U-net-like architectures are frequently employed in diffusion models for segmentation tasks. These architectural designs include dense skip connections that may pose challenges for interpreting intermediate features. Consequently, they might not efficiently convey semantic information throughout various layers of the encoder-decoder architecture. To address these challenges, we propose a new model for semantic segmentation known as the diffusion model with parallel multi-scale branches. This model consists of Parallel Multiscale Diffusion modules (P-MSDiff) and a Cross-Bridge Linear Attention mechanism (CBLA). P-MSDiff enhances the understanding of semantic information across multiple levels of granularity and detects repetitive distribution data through the integration of recursive denoising branches. It further facilitates the amalgamation of data by connecting relevant branches to the primary framework to enable concurrent denoising. Furthermore, within the interconnected transformer architecture, the LA module has been substituted with the CBLA module. This module integrates a semidefinite matrix linked to the query into the dot product computation of keys and values. This integration enables the adaptation of queries within the LA framework. This adjustment enhances the structure for multi-head attention computation, leading to enhanced network performance and CBLA is a plug-and-play module. Our model demonstrates superior performance based on the J1 metric on both the UAVid and Vaihingen Building datasets, showing improvements of 1.60% and 1.40% over strong baseline models, respectively.
Abstract:Human instance matting aims to estimate an alpha matte for each human instance in an image, which is extremely challenging and has rarely been studied so far. Despite some efforts to use instance segmentation to generate a trimap for each instance and apply trimap-based matting methods, the resulting alpha mattes are often inaccurate due to inaccurate segmentation. In addition, this approach is computationally inefficient due to multiple executions of the matting method. To address these problems, this paper proposes a novel End-to-End Human Instance Matting (E2E-HIM) framework for simultaneous multiple instance matting in a more efficient manner. Specifically, a general perception network first extracts image features and decodes instance contexts into latent codes. Then, a united guidance network exploits spatial attention and semantics embedding to generate united semantics guidance, which encodes the locations and semantic correspondences of all instances. Finally, an instance matting network decodes the image features and united semantics guidance to predict all instance-level alpha mattes. In addition, we construct a large-scale human instance matting dataset (HIM-100K) comprising over 100,000 human images with instance alpha matte labels. Experiments on HIM-100K demonstrate the proposed E2E-HIM outperforms the existing methods on human instance matting with 50% lower errors and 5X faster speed (6 instances in a 640X640 image). Experiments on the PPM-100, RWP-636, and P3M datasets demonstrate that E2E-HIM also achieves competitive performance on traditional human matting.
Abstract:Natural image matting aims to estimate the alpha matte of the foreground from a given image. Various approaches have been explored to address this problem, such as interactive matting methods that use guidance such as click or trimap, and automatic matting methods tailored to specific objects. However, existing matting methods are designed for specific objects or guidance, neglecting the common requirement of aggregating global and local contexts in image matting. As a result, these methods often encounter challenges in accurately identifying the foreground and generating precise boundaries, which limits their effectiveness in unforeseen scenarios. In this paper, we propose a simple and universal matting framework, named Dual-Context Aggregation Matting (DCAM), which enables robust image matting with arbitrary guidance or without guidance. Specifically, DCAM first adopts a semantic backbone network to extract low-level features and context features from the input image and guidance. Then, we introduce a dual-context aggregation network that incorporates global object aggregators and local appearance aggregators to iteratively refine the extracted context features. By performing both global contour segmentation and local boundary refinement, DCAM exhibits robustness to diverse types of guidance and objects. Finally, we adopt a matting decoder network to fuse the low-level features and the refined context features for alpha matte estimation. Experimental results on five matting datasets demonstrate that the proposed DCAM outperforms state-of-the-art matting methods in both automatic matting and interactive matting tasks, which highlights the strong universality and high performance of DCAM. The source code is available at \url{https://github.com/Windaway/DCAM}.
Abstract:For natural image matting, context information plays a crucial role in estimating alpha mattes especially when it is challenging to distinguish foreground from its background. Exiting deep learning-based methods exploit specifically designed context aggregation modules to refine encoder features. However, the effectiveness of these modules has not been thoroughly explored. In this paper, we conduct extensive experiments to reveal that the context aggregation modules are actually not as effective as expected. We also demonstrate that when learned on large image patches, basic encoder-decoder networks with a larger receptive field can effectively aggregate context to achieve better performance.Upon the above findings, we propose a simple yet effective matting network, named AEMatter, which enlarges the receptive field by incorporating an appearance-enhanced axis-wise learning block into the encoder and adopting a hybrid-transformer decoder. Experimental results on four datasets demonstrate that our AEMatter significantly outperforms state-of-the-art matting methods (e.g., on the Adobe Composition-1K dataset, \textbf{25\%} and \textbf{40\%} reduction in terms of SAD and MSE, respectively, compared against MatteFormer). The code and model are available at \url{https://github.com/QLYoo/AEMatter}.
Abstract:Natural image matting estimates the alpha values of unknown regions in the trimap. Recently, deep learning based methods propagate the alpha values from the known regions to unknown regions according to the similarity between them. However, we find that more than 50\% pixels in the unknown regions cannot be correlated to pixels in known regions due to the limitation of small effective reception fields of common convolutional neural networks, which leads to inaccurate estimation when the pixels in the unknown regions cannot be inferred only with pixels in the reception fields. To solve this problem, we propose Long-Range Feature Propagating Network (LFPNet), which learns the long-range context features outside the reception fields for alpha matte estimation. Specifically, we first design the propagating module which extracts the context features from the downsampled image. Then, we present Center-Surround Pyramid Pooling (CSPP) that explicitly propagates the context features from the surrounding context image patch to the inner center image patch. Finally, we use the matting module which takes the image, trimap and context features to estimate the alpha matte. Experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on the AlphaMatting and Adobe Image Matting datasets.