Abstract:Human instance matting aims to estimate an alpha matte for each human instance in an image, which is extremely challenging and has rarely been studied so far. Despite some efforts to use instance segmentation to generate a trimap for each instance and apply trimap-based matting methods, the resulting alpha mattes are often inaccurate due to inaccurate segmentation. In addition, this approach is computationally inefficient due to multiple executions of the matting method. To address these problems, this paper proposes a novel End-to-End Human Instance Matting (E2E-HIM) framework for simultaneous multiple instance matting in a more efficient manner. Specifically, a general perception network first extracts image features and decodes instance contexts into latent codes. Then, a united guidance network exploits spatial attention and semantics embedding to generate united semantics guidance, which encodes the locations and semantic correspondences of all instances. Finally, an instance matting network decodes the image features and united semantics guidance to predict all instance-level alpha mattes. In addition, we construct a large-scale human instance matting dataset (HIM-100K) comprising over 100,000 human images with instance alpha matte labels. Experiments on HIM-100K demonstrate the proposed E2E-HIM outperforms the existing methods on human instance matting with 50% lower errors and 5X faster speed (6 instances in a 640X640 image). Experiments on the PPM-100, RWP-636, and P3M datasets demonstrate that E2E-HIM also achieves competitive performance on traditional human matting.
Abstract:For natural image matting, context information plays a crucial role in estimating alpha mattes especially when it is challenging to distinguish foreground from its background. Exiting deep learning-based methods exploit specifically designed context aggregation modules to refine encoder features. However, the effectiveness of these modules has not been thoroughly explored. In this paper, we conduct extensive experiments to reveal that the context aggregation modules are actually not as effective as expected. We also demonstrate that when learned on large image patches, basic encoder-decoder networks with a larger receptive field can effectively aggregate context to achieve better performance.Upon the above findings, we propose a simple yet effective matting network, named AEMatter, which enlarges the receptive field by incorporating an appearance-enhanced axis-wise learning block into the encoder and adopting a hybrid-transformer decoder. Experimental results on four datasets demonstrate that our AEMatter significantly outperforms state-of-the-art matting methods (e.g., on the Adobe Composition-1K dataset, \textbf{25\%} and \textbf{40\%} reduction in terms of SAD and MSE, respectively, compared against MatteFormer). The code and model are available at \url{https://github.com/QLYoo/AEMatter}.