Abstract:Reconfigurable intelligent surfaces (RISs) have been recognized as a revolutionary technology for future wireless networks. However, RIS-assisted communications have to continuously tune phase-shifts relying on accurate channel state information (CSI) that is generally difficult to obtain due to the large number of RIS channels. The joint design of CSI acquisition and subsection RIS phase-shifts remains a significant challenge in dynamic environments. In this paper, we propose a diffusion-enhanced decision Transformer (DEDT) framework consisting of a diffusion model (DM) designed for efficient CSI acquisition and a decision Transformer (DT) utilized for phase-shift optimizations. Specifically, we first propose a novel DM mechanism, i.e., conditional imputation based on denoising diffusion probabilistic model, for rapidly acquiring real-time full CSI by exploiting the spatial correlations inherent in wireless channels. Then, we optimize beamforming schemes based on the DT architecture, which pre-trains on historical environments to establish a robust policy model. Next, we incorporate a fine-tuning mechanism to ensure rapid beamforming adaptation to new environments, eliminating the retraining process that is imperative in conventional reinforcement learning (RL) methods. Simulation results demonstrate that DEDT can enhance efficiency and adaptability of RIS-aided communications with fluctuating channel conditions compared to state-of-the-art RL methods.
Abstract:This paper investigates an intelligent reflecting surface (IRS) aided wireless federated learning (FL) system, where an access point (AP) coordinates multiple edge devices to train a machine leaning model without sharing their own raw data. During the training process, we exploit the joint channel reconfiguration via IRS and resource allocation design to reduce the latency of a FL task. Particularly, we propose three transmission protocols for assisting the local model uploading from multiple devices to an AP, namely IRS aided time division multiple access (I-TDMA), IRS aided frequency division multiple access (I-FDMA), and IRS aided non-orthogonal multiple access (INOMA), to investigate the impact of IRS on the multiple access for FL. Under the three protocols, we minimize the per-round latency subject to a given training loss by jointly optimizing the device scheduling, IRS phase-shifts, and communicationcomputation resource allocation. For the associated problem under I-TDMA, an efficient algorithm is proposed to solve it optimally by exploiting its intrinsic structure, whereas the highquality solutions of the problems under I-FDMA and I-NOMA are obtained by invoking a successive convex approximation (SCA) based approach. Then, we further develop a theoretical framework for the performance comparison of the proposed three transmission protocols. Sufficient conditions for ensuring that I-TDMA outperforms I-NOMA and those of its opposite are unveiled, which is fundamentally different from that NOMA always outperforms TDMA in the system without IRS. Simulation results validate our theoretical findings and also demonstrate the usefulness of IRS for enhancing the fundamental tradeoff between the learning latency and learning accuracy.