Abstract:This paper investigates an intelligent reflecting surface (IRS) aided wireless federated learning (FL) system, where an access point (AP) coordinates multiple edge devices to train a machine leaning model without sharing their own raw data. During the training process, we exploit the joint channel reconfiguration via IRS and resource allocation design to reduce the latency of a FL task. Particularly, we propose three transmission protocols for assisting the local model uploading from multiple devices to an AP, namely IRS aided time division multiple access (I-TDMA), IRS aided frequency division multiple access (I-FDMA), and IRS aided non-orthogonal multiple access (INOMA), to investigate the impact of IRS on the multiple access for FL. Under the three protocols, we minimize the per-round latency subject to a given training loss by jointly optimizing the device scheduling, IRS phase-shifts, and communicationcomputation resource allocation. For the associated problem under I-TDMA, an efficient algorithm is proposed to solve it optimally by exploiting its intrinsic structure, whereas the highquality solutions of the problems under I-FDMA and I-NOMA are obtained by invoking a successive convex approximation (SCA) based approach. Then, we further develop a theoretical framework for the performance comparison of the proposed three transmission protocols. Sufficient conditions for ensuring that I-TDMA outperforms I-NOMA and those of its opposite are unveiled, which is fundamentally different from that NOMA always outperforms TDMA in the system without IRS. Simulation results validate our theoretical findings and also demonstrate the usefulness of IRS for enhancing the fundamental tradeoff between the learning latency and learning accuracy.