Abstract:Personalized image generation has made significant strides in adapting content to novel concepts. However, a persistent challenge remains: balancing the accurate reconstruction of unseen concepts with the need for editability according to the prompt, especially when dealing with the complex nuances of facial features. In this study, we delve into the temporal dynamics of the text-to-image conditioning process, emphasizing the crucial role of stage partitioning in introducing new concepts. We present PersonaMagic, a stage-regulated generative technique designed for high-fidelity face customization. Using a simple MLP network, our method learns a series of embeddings within a specific timestep interval to capture face concepts. Additionally, we develop a Tandem Equilibrium mechanism that adjusts self-attention responses in the text encoder, balancing text description and identity preservation, improving both areas. Extensive experiments confirm the superiority of PersonaMagic over state-of-the-art methods in both qualitative and quantitative evaluations. Moreover, its robustness and flexibility are validated in non-facial domains, and it can also serve as a valuable plug-in for enhancing the performance of pretrained personalization models.
Abstract:Diabetic foot neuropathy (DFN) is a critical factor leading to diabetic foot ulcers, which is one of the most common and severe complications of diabetes mellitus (DM) and is associated with high risks of amputation and mortality. Despite its significance, existing datasets do not directly derive from plantar data and lack continuous, long-term foot-specific information. To advance DFN research, we have collected a novel dataset comprising continuous plantar pressure data to recognize diabetic foot neuropathy. This dataset includes data from 94 DM patients with DFN and 41 DM patients without DFN. Moreover, traditional methods divide datasets by individuals, potentially leading to significant domain discrepancies in some feature spaces due to the absence of mid-domain data. In this paper, we propose an effective domain adaptation method to address this proplem. We split the dataset based on convolutional feature statistics and select appropriate sub-source domains to enhance efficiency and avoid negative transfer. We then align the distributions of each source and target domain pair in specific feature spaces to minimize the domain gap. Comprehensive results validate the effectiveness of our method on both the newly proposed dataset for DFN recognition and an existing dataset.
Abstract:Video Visual Relation Detection (VidVRD) focuses on understanding how entities interact over time and space in videos, a key step for gaining deeper insights into video scenes beyond basic visual tasks. Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation categories are present and another for determining their temporal boundaries. This split overlooks the inherent connection between these elements. Addressing the need to recognize entity pairs' spatiotemporal interactions across a range of durations, we propose VrdONE, a streamlined yet efficacious one-stage model. VrdONE combines the features of subjects and objects, turning predicate detection into 1D instance segmentation on their combined representations. This setup allows for both relation category identification and binary mask generation in one go, eliminating the need for extra steps like proposal generation or post-processing. VrdONE facilitates the interaction of features across various frames, adeptly capturing both short-lived and enduring relations. Additionally, we introduce the Subject-Object Synergy (SOS) module, enhancing how subjects and objects perceive each other before combining. VrdONE achieves state-of-the-art performances on the VidOR benchmark and ImageNet-VidVRD, showcasing its superior capability in discerning relations across different temporal scales. The code is available at \textcolor[RGB]{228,58,136}{\href{https://github.com/lucaspk512/vrdone}{https://github.com/lucaspk512/vrdone}}.
Abstract:Reversible face anonymization, unlike traditional face pixelization, seeks to replace sensitive identity information in facial images with synthesized alternatives, preserving privacy without sacrificing image clarity. Traditional methods, such as encoder-decoder networks, often result in significant loss of facial details due to their limited learning capacity. Additionally, relying on latent manipulation in pre-trained GANs can lead to changes in ID-irrelevant attributes, adversely affecting data utility due to GAN inversion inaccuracies. This paper introduces G\textsuperscript{2}Face, which leverages both generative and geometric priors to enhance identity manipulation, achieving high-quality reversible face anonymization without compromising data utility. We utilize a 3D face model to extract geometric information from the input face, integrating it with a pre-trained GAN-based decoder. This synergy of generative and geometric priors allows the decoder to produce realistic anonymized faces with consistent geometry. Moreover, multi-scale facial features are extracted from the original face and combined with the decoder using our novel identity-aware feature fusion blocks (IFF). This integration enables precise blending of the generated facial patterns with the original ID-irrelevant features, resulting in accurate identity manipulation. Extensive experiments demonstrate that our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility. Code is available at https://github.com/Harxis/G2Face.
Abstract:In this paper, we introduce D$^4$-VTON, an innovative solution for image-based virtual try-on. We address challenges from previous studies, such as semantic inconsistencies before and after garment warping, and reliance on static, annotation-driven clothing parsers. Additionally, we tackle the complexities in diffusion-based VTON models when handling simultaneous tasks like inpainting and denoising. Our approach utilizes two key technologies: Firstly, Dynamic Semantics Disentangling Modules (DSDMs) extract abstract semantic information from garments to create distinct local flows, improving precise garment warping in a self-discovered manner. Secondly, by integrating a Differential Information Tracking Path (DITP), we establish a novel diffusion-based VTON paradigm. This path captures differential information between incomplete try-on inputs and their complete versions, enabling the network to handle multiple degradations independently, thereby minimizing learning ambiguities and achieving realistic results with minimal overhead. Extensive experiments demonstrate that D$^4$-VTON significantly outperforms existing methods in both quantitative metrics and qualitative evaluations, demonstrating its capability in generating realistic images and ensuring semantic consistency.
Abstract:Dance, as an art form, fundamentally hinges on the precise synchronization with musical beats. However, achieving aesthetically pleasing dance sequences from music is challenging, with existing methods often falling short in controllability and beat alignment. To address these shortcomings, this paper introduces Beat-It, a novel framework for beat-specific, key pose-guided dance generation. Unlike prior approaches, Beat-It uniquely integrates explicit beat awareness and key pose guidance, effectively resolving two main issues: the misalignment of generated dance motions with musical beats, and the inability to map key poses to specific beats, critical for practical choreography. Our approach disentangles beat conditions from music using a nearest beat distance representation and employs a hierarchical multi-condition fusion mechanism. This mechanism seamlessly integrates key poses, beats, and music features, mitigating condition conflicts and offering rich, multi-conditioned guidance for dance generation. Additionally, a specially designed beat alignment loss ensures the generated dance movements remain in sync with the designated beats. Extensive experiments confirm Beat-It's superiority over existing state-of-the-art methods in terms of beat alignment and motion controllability.
Abstract:Previous Knowledge Distillation based efficient image retrieval methods employs a lightweight network as the student model for fast inference. However, the lightweight student model lacks adequate representation capacity for effective knowledge imitation during the most critical early training period, causing final performance degeneration. To tackle this issue, we propose a Capacity Dynamic Distillation framework, which constructs a student model with editable representation capacity. Specifically, the employed student model is initially a heavy model to fruitfully learn distilled knowledge in the early training epochs, and the student model is gradually compressed during the training. To dynamically adjust the model capacity, our dynamic framework inserts a learnable convolutional layer within each residual block in the student model as the channel importance indicator. The indicator is optimized simultaneously by the image retrieval loss and the compression loss, and a retrieval-guided gradient resetting mechanism is proposed to release the gradient conflict. Extensive experiments show that our method has superior inference speed and accuracy, e.g., on the VeRi-776 dataset, given the ResNet101 as a teacher, our method saves 67.13% model parameters and 65.67% FLOPs (around 24.13% and 21.94% higher than state-of-the-arts) without sacrificing accuracy (around 2.11% mAP higher than state-of-the-arts).
Abstract:Temporal repetition counting aims to estimate the number of cycles of a given repetitive action. Existing deep learning methods assume repetitive actions are performed in a fixed time-scale, which is invalid for the complex repetitive actions in real life. In this paper, we tailor a context-aware and scale-insensitive framework, to tackle the challenges in repetition counting caused by the unknown and diverse cycle-lengths. Our approach combines two key insights: (1) Cycle lengths from different actions are unpredictable that require large-scale searching, but, once a coarse cycle length is determined, the variety between repetitions can be overcome by regression. (2) Determining the cycle length cannot only rely on a short fragment of video but a contextual understanding. The first point is implemented by a coarse-to-fine cycle refinement method. It avoids the heavy computation of exhaustively searching all the cycle lengths in the video, and, instead, it propagates the coarse prediction for further refinement in a hierarchical manner. We secondly propose a bidirectional cycle length estimation method for a context-aware prediction. It is a regression network that takes two consecutive coarse cycles as input, and predicts the locations of the previous and next repetitive cycles. To benefit the training and evaluation of temporal repetition counting area, we construct a new and largest benchmark, which contains 526 videos with diverse repetitive actions. Extensive experiments show that the proposed network trained on a single dataset outperforms state-of-the-art methods on several benchmarks, indicating that the proposed framework is general enough to capture repetition patterns across domains.