Abstract:Sketch, a powerful artistic technique to capture essential visual information about real-world objects, is increasingly gaining attention in the image synthesis field. However, evaluating the quality of synthesized sketches presents unique unsolved challenges. Current evaluation methods for sketch synthesis are inadequate due to the lack of a unified benchmark dataset, over-reliance on classification accuracy for recognizability, and unfair evaluation of sketches with different levels of simplification. To address these issues, we introduce SketchRef, a benchmark dataset comprising 4 categories of reference photos--animals, human faces, human bodies, and common objects--alongside novel evaluation metrics. Considering that classification accuracy is insufficient to measure the structural consistency between a sketch and its reference photo, we propose the mean Object Keypoint Similarity (mOKS) metric, utilizing pose estimation to assess structure-level recognizability. To ensure fair evaluation sketches with different simplification levels, we propose a recognizability calculation method constrained by simplicity. We also collect 8K responses from art enthusiasts, validating the effectiveness of our proposed evaluation methods. We hope this work can provide a comprehensive evaluation of sketch synthesis algorithms, thereby aligning their performance more closely with human understanding.
Abstract:Handwritten Mathematical Expression Recognition (HMER) has extensive applications in automated grading and office automation. However, existing sequence-based decoding methods, which directly predict $\LaTeX$ sequences, struggle to understand and model the inherent tree structure of $\LaTeX$ and often fail to ensure syntactic correctness in the decoded results. To address these challenges, we propose a novel model named TAMER (Tree-Aware Transformer) for handwritten mathematical expression recognition. TAMER introduces an innovative Tree-aware Module while maintaining the flexibility and efficient training of Transformer. TAMER combines the advantages of both sequence decoding and tree decoding models by jointly optimizing sequence prediction and tree structure prediction tasks, which enhances the model's understanding and generalization of complex mathematical expression structures. During inference, TAMER employs a Tree Structure Prediction Scoring Mechanism to improve the structural validity of the generated $\LaTeX$ sequences. Experimental results on CROHME datasets demonstrate that TAMER outperforms traditional sequence decoding and tree decoding models, especially in handling complex mathematical structures, achieving state-of-the-art (SOTA) performance.
Abstract:Continual Learning (CL) poses a significant challenge in Artificial Intelligence, aiming to mirror the human ability to incrementally acquire knowledge and skills. While extensive research has focused on CL within the context of classification tasks, the advent of increasingly powerful generative models necessitates the exploration of Continual Learning of Generative models (CLoG). This paper advocates for shifting the research focus from classification-based CL to CLoG. We systematically identify the unique challenges presented by CLoG compared to traditional classification-based CL. We adapt three types of existing CL methodologies, replay-based, regularization-based, and parameter-isolation-based methods to generative tasks and introduce comprehensive benchmarks for CLoG that feature great diversity and broad task coverage. Our benchmarks and results yield intriguing insights that can be valuable for developing future CLoG methods. Additionally, we will release a codebase designed to facilitate easy benchmarking and experimentation in CLoG publicly at https://github.com/linhaowei1/CLoG. We believe that shifting the research focus to CLoG will benefit the continual learning community and illuminate the path for next-generation AI-generated content (AIGC) in a lifelong learning paradigm.
Abstract:Significant progress has been made in the field of handwritten mathematical expression recognition, while existing encoder-decoder methods are usually difficult to model global information in \LaTeX. Therefore, this paper introduces a novel approach, Implicit Character-Aided Learning (ICAL), to mine the global expression information and enhance handwritten mathematical expression recognition. Specifically, we propose the Implicit Character Construction Module (ICCM) to predict implicit character sequences and use a Fusion Module to merge the outputs of the ICCM and the decoder, thereby producing corrected predictions. By modeling and utilizing implicit character information, ICAL achieves a more accurate and context-aware interpretation of handwritten mathematical expressions. Experimental results demonstrate that ICAL notably surpasses the state-of-the-art(SOTA) models, improving the expression recognition rate (ExpRate) by 2.21\%/1.75\%/1.28\% on the CROHME 2014/2016/2019 datasets respectively, and achieves a remarkable 69.25\% on the challenging HME100k test set. We make our code available on the GitHub: https://github.com/qingzhenduyu/ICAL