Abstract:Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.
Abstract:Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.
Abstract:Multimodal large language models (MLLMs) have achieved remarkable progress on various visual question answering and reasoning tasks leveraging instruction fine-tuning specific datasets. They can also learn from preference data annotated by human to enhance their reasoning ability and mitigate hallucinations. Most of preference data is generated from the model itself. However, existing methods require high-quality critical labels, which are costly and rely on human or proprietary models like GPT-4V. In this work, we propose Enhancing Alignment in MLLMs via Critical Observation (EACO), which aligns MLLMs by self-generated preference data using only 5k images economically. Our approach begins with collecting and refining a Scoring Evaluation Instruction-tuning dataset to train a critical evaluation model, termed the Critic. This Critic observes model responses across multiple dimensions, selecting preferred and non-preferred outputs for refined Direct Preference Optimization (DPO) tuning. To further enhance model performance, we employ an additional supervised fine-tuning stage after preference tuning. EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition. EACO achieves an 8.5% improvement over LLaVA-v1.6-Mistral-7B across multiple benchmarks. Remarkably, EACO also shows the potential critical ability in open-source MLLMs, demonstrating that EACO is a viable path to boost the competence of MLLMs.
Abstract:The advent of AI-Generated Content (AIGC) has spurred research into automated video generation to streamline conventional processes. However, automating storytelling video production, particularly for customized narratives, remains challenging due to the complexity of maintaining subject consistency across shots. While existing approaches like Mora and AesopAgent integrate multiple agents for Story-to-Video (S2V) generation, they fall short in preserving protagonist consistency and supporting Customized Storytelling Video Generation (CSVG). To address these limitations, we propose StoryAgent, a multi-agent framework designed for CSVG. StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process. Notably, our framework includes agents for story design, storyboard generation, video creation, agent coordination, and result evaluation. Leveraging the strengths of different models, StoryAgent enhances control over the generation process, significantly improving character consistency. Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency, while a novel storyboard generation pipeline is proposed to maintain subject consistency across shots. Extensive experiments demonstrate the effectiveness of our approach in synthesizing highly consistent storytelling videos, outperforming state-of-the-art methods. Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
Abstract:Self-correction is a novel method that can stimulate the potential reasoning abilities of large language models (LLMs). It involves detecting and correcting errors during the inference process when LLMs solve reasoning problems. However, recent works do not regard self-correction as a spontaneous and intrinsic capability of LLMs. Instead, such correction is achieved through post-hoc generation, external knowledge introduction, multi-model collaboration, and similar techniques. In this paper, we propose a series of mathematical LLMs called S$^3$c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning. This capability helps LLMs to recognize whether their ongoing inference tends to contain errors and simultaneously correct these errors to produce a more reliable response. We proposed a method, which employs a step-level sampling approach to construct step-wise self-correction data for achieving such ability. Additionally, we implement a training strategy that uses above constructed data to equip LLMs with spontaneous step-level self-correction capacities. Our data and methods have been demonstrated to be effective across various foundation LLMs, consistently showing significant progress in evaluations on GSM8K, MATH, and other mathematical benchmarks. To the best of our knowledge, we are the first to introduce the spontaneous step-level self-correction ability of LLMs in mathematical reasoning.
Abstract:The imperative task of revising or updating the knowledge stored within large language models arises from two distinct sources: intrinsic errors inherent in the model which should be corrected and outdated knowledge due to external shifts in the real world which should be updated. Prevailing efforts in model editing conflate these two distinct categories of edits arising from distinct reasons and directly modify the original knowledge in models into new knowledge. However, we argue that preserving the model's original knowledge remains pertinent. Specifically, if a model's knowledge becomes outdated due to evolving worldly dynamics, it should retain recollection of the historical knowledge while integrating the newfound knowledge. In this work, we introduce the task of Temporal Knowledge Editing (TKE) and establish a benchmark AToKe (Assessment of TempOral Knowledge Editing) to evaluate current model editing methods. We find that while existing model editing methods are effective at making models remember new knowledge, the edited model catastrophically forgets historical knowledge. To address this gap, we propose a simple and general framework termed Multi-Editing with Time Objective (METO) for enhancing existing editing models, which edits both historical and new knowledge concurrently and optimizes the model's prediction for the time of each fact. Our assessments demonstrate that while AToKe is still difficult, METO maintains the effectiveness of learning new knowledge and meanwhile substantially improves the performance of edited models on utilizing historical knowledge.