Abstract:Multimodal large language models (MLLMs) have achieved remarkable progress on various visual question answering and reasoning tasks leveraging instruction fine-tuning specific datasets. They can also learn from preference data annotated by human to enhance their reasoning ability and mitigate hallucinations. Most of preference data is generated from the model itself. However, existing methods require high-quality critical labels, which are costly and rely on human or proprietary models like GPT-4V. In this work, we propose Enhancing Alignment in MLLMs via Critical Observation (EACO), which aligns MLLMs by self-generated preference data using only 5k images economically. Our approach begins with collecting and refining a Scoring Evaluation Instruction-tuning dataset to train a critical evaluation model, termed the Critic. This Critic observes model responses across multiple dimensions, selecting preferred and non-preferred outputs for refined Direct Preference Optimization (DPO) tuning. To further enhance model performance, we employ an additional supervised fine-tuning stage after preference tuning. EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition. EACO achieves an 8.5% improvement over LLaVA-v1.6-Mistral-7B across multiple benchmarks. Remarkably, EACO also shows the potential critical ability in open-source MLLMs, demonstrating that EACO is a viable path to boost the competence of MLLMs.
Abstract:In this paper, we propose to create animatable avatars for interacting hands with 3D Gaussian Splatting (GS) and single-image inputs. Existing GS-based methods designed for single subjects often yield unsatisfactory results due to limited input views, various hand poses, and occlusions. To address these challenges, we introduce a novel two-stage interaction-aware GS framework that exploits cross-subject hand priors and refines 3D Gaussians in interacting areas. Particularly, to handle hand variations, we disentangle the 3D presentation of hands into optimization-based identity maps and learning-based latent geometric features and neural texture maps. Learning-based features are captured by trained networks to provide reliable priors for poses, shapes, and textures, while optimization-based identity maps enable efficient one-shot fitting of out-of-distribution hands. Furthermore, we devise an interaction-aware attention module and a self-adaptive Gaussian refinement module. These modules enhance image rendering quality in areas with intra- and inter-hand interactions, overcoming the limitations of existing GS-based methods. Our proposed method is validated via extensive experiments on the large-scale InterHand2.6M dataset, and it significantly improves the state-of-the-art performance in image quality. Project Page: \url{https://github.com/XuanHuang0/GuassianHand}.
Abstract:3D face editing is a significant task in multimedia, aimed at the manipulation of 3D face models across various control signals. The success of 3D-aware GAN provides expressive 3D models learned from 2D single-view images only, encouraging researchers to discover semantic editing directions in its latent space. However, previous methods face challenges in balancing quality, efficiency, and generalization. To solve the problem, we explore the possibility of introducing the strength of diffusion model into 3D-aware GANs. In this paper, we present Face Clan, a fast and text-general approach for generating and manipulating 3D faces based on arbitrary attribute descriptions. To achieve disentangled editing, we propose to diffuse on the latent space under a pair of opposite prompts to estimate the mask indicating the region of interest on latent codes. Based on the mask, we then apply denoising to the masked latent codes to reveal the editing direction. Our method offers a precisely controllable manipulation method, allowing users to intuitively customize regions of interest with the text description. Experiments demonstrate the effectiveness and generalization of our Face Clan for various pre-trained GANs. It offers an intuitive and wide application for text-guided face editing that contributes to the landscape of multimedia content creation.
Abstract:General text-to-image models bring revolutionary innovation to the fields of arts, design, and media. However, when applied to garment generation, even the state-of-the-art text-to-image models suffer from fine-grained semantic misalignment, particularly concerning the quantity, position, and interrelations of garment components. Addressing this, we propose GarmentAligner, a text-to-garment diffusion model trained with retrieval-augmented multi-level corrections. To achieve semantic alignment at the component level, we introduce an automatic component extraction pipeline to obtain spatial and quantitative information of garment components from corresponding images and captions. Subsequently, to exploit component relationships within the garment images, we construct retrieval subsets for each garment by retrieval augmentation based on component-level similarity ranking and conduct contrastive learning to enhance the model perception of components from positive and negative samples. To further enhance the alignment of components across semantic, spatial, and quantitative granularities, we propose the utilization of multi-level correction losses that leverage detailed component information. The experimental findings demonstrate that GarmentAligner achieves superior fidelity and fine-grained semantic alignment when compared to existing competitors.
Abstract:As cutting-edge Text-to-Image (T2I) generation models already excel at producing remarkable single images, an even more challenging task, i.e., multi-turn interactive image generation begins to attract the attention of related research communities. This task requires models to interact with users over multiple turns to generate a coherent sequence of images. However, since users may switch subjects frequently, current efforts struggle to maintain subject consistency while generating diverse images. To address this issue, we introduce a training-free multi-agent framework called AutoStudio. AutoStudio employs three agents based on large language models (LLMs) to handle interactions, along with a stable diffusion (SD) based agent for generating high-quality images. Specifically, AutoStudio consists of (i) a subject manager to interpret interaction dialogues and manage the context of each subject, (ii) a layout generator to generate fine-grained bounding boxes to control subject locations, (iii) a supervisor to provide suggestions for layout refinements, and (iv) a drawer to complete image generation. Furthermore, we introduce a Parallel-UNet to replace the original UNet in the drawer, which employs two parallel cross-attention modules for exploiting subject-aware features. We also introduce a subject-initialized generation method to better preserve small subjects. Our AutoStudio hereby can generate a sequence of multi-subject images interactively and consistently. Extensive experiments on the public CMIGBench benchmark and human evaluations show that AutoStudio maintains multi-subject consistency across multiple turns well, and it also raises the state-of-the-art performance by 13.65% in average Frechet Inception Distance and 2.83% in average character-character similarity.
Abstract:Optical flow estimation is one of the fundamental tasks in low-level computer vision, which describes the pixel-wise displacement and can be used in many other tasks. From the apparent aspect, the optical flow can be viewed as the correlation between the pixels in consecutive frames, so continuously refining the correlation volume can achieve an outstanding performance. However, it will make the method have a catastrophic computational complexity. Not only that, the error caused by the occlusion regions of the successive frames will be amplified through the inaccurate warp operation. These challenges can not be solved only from the apparent view, so this paper rethinks the optical flow estimation from the kinetics viewpoint.We propose a method combining the apparent and kinetics information from this motivation. The proposed method directly predicts the optical flow from the feature extracted from images instead of building the correlation volume, which will improve the efficiency of the whole network. Meanwhile, the proposed method involves a new differentiable warp operation that simultaneously considers the warping and occlusion. Moreover, the proposed method blends the kinetics feature with the apparent feature through the novel self-supervised loss function. Furthermore, comprehensive experiments and ablation studies prove that the proposed novel insight into how to predict the optical flow can achieve the better performance of the state-of-the-art methods, and in some metrics, the proposed method outperforms the correlation-based method, especially in situations containing occlusion and fast moving. The code will be public.
Abstract:Recent advances in diffusion models can generate high-quality and stunning images from text. However, multi-turn image generation, which is of high demand in real-world scenarios, still faces challenges in maintaining semantic consistency between images and texts, as well as contextual consistency of the same subject across multiple interactive turns. To address this issue, we introduce TheaterGen, a training-free framework that integrates large language models (LLMs) and text-to-image (T2I) models to provide the capability of multi-turn image generation. Within this framework, LLMs, acting as a "Screenwriter", engage in multi-turn interaction, generating and managing a standardized prompt book that encompasses prompts and layout designs for each character in the target image. Based on these, Theatergen generate a list of character images and extract guidance information, akin to the "Rehearsal". Subsequently, through incorporating the prompt book and guidance information into the reverse denoising process of T2I diffusion models, Theatergen generate the final image, as conducting the "Final Performance". With the effective management of prompt books and character images, TheaterGen significantly improves semantic and contextual consistency in synthesized images. Furthermore, we introduce a dedicated benchmark, CMIGBench (Consistent Multi-turn Image Generation Benchmark) with 8000 multi-turn instructions. Different from previous multi-turn benchmarks, CMIGBench does not define characters in advance. Both the tasks of story generation and multi-turn editing are included on CMIGBench for comprehensive evaluation. Extensive experimental results show that TheaterGen outperforms state-of-the-art methods significantly. It raises the performance bar of the cutting-edge Mini DALLE 3 model by 21% in average character-character similarity and 19% in average text-image similarity.
Abstract:Diffusion-based technologies have made significant strides, particularly in personalized and customized facialgeneration. However, existing methods face challenges in achieving high-fidelity and detailed identity (ID)consistency, primarily due to insufficient fine-grained control over facial areas and the lack of a comprehensive strategy for ID preservation by fully considering intricate facial details and the overall face. To address these limitations, we introduce ConsistentID, an innovative method crafted for diverseidentity-preserving portrait generation under fine-grained multimodal facial prompts, utilizing only a single reference image. ConsistentID comprises two key components: a multimodal facial prompt generator that combines facial features, corresponding facial descriptions and the overall facial context to enhance precision in facial details, and an ID-preservation network optimized through the facial attention localization strategy, aimed at preserving ID consistency in facial regions. Together, these components significantly enhance the accuracy of ID preservation by introducing fine-grained multimodal ID information from facial regions. To facilitate training of ConsistentID, we present a fine-grained portrait dataset, FGID, with over 500,000 facial images, offering greater diversity and comprehensiveness than existing public facial datasets. % such as LAION-Face, CelebA, FFHQ, and SFHQ. Experimental results substantiate that our ConsistentID achieves exceptional precision and diversity in personalized facial generation, surpassing existing methods in the MyStyle dataset. Furthermore, while ConsistentID introduces more multimodal ID information, it maintains a fast inference speed during generation.
Abstract:Recent 3D face reconstruction methods have made remarkable advancements, yet there remain huge challenges in monocular high-quality facial reflectance reconstruction. Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models. However, the lack of subject diversity poses challenges in achieving good generalization and widespread applicability. In this paper, we learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance. Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training. Our key insight is that reflectance data shares facial structures with RGB faces, which enables obtaining expressive facial prior from inexpensive RGB data thus reducing the dependency on reflectance data. We first learn a high-quality prior for facial reflectance. Specifically, we pretrain multi-domain facial feature codebooks and design a codebook fusion method to align the reflectance and RGB domains. Then, we propose an identity-conditioned swapping module that injects facial identity from the target image into the pre-trained autoencoder to modify the identity of the source reflectance image. Finally, we stitch multi-view swapped reflectance images to obtain renderable assets. Extensive experiments demonstrate that our method exhibits excellent generalization capability and achieves state-of-the-art facial reflectance reconstruction results for in-the-wild faces. Our project page is https://xingyuren.github.io/id2reflectance/.
Abstract:Multimedia compression allows us to watch videos, see pictures and hear sounds within a limited bandwidth, which helps the flourish of the internet. During the past decades, multimedia compression has achieved great success using hand-craft features and systems. With the development of artificial intelligence and video compression, there emerges a lot of research work related to using the neural network on the video compression task to get rid of the complicated system. Not only producing the advanced algorithms, but researchers also spread the compression to different content, such as User Generated Content(UGC). With the rapid development of mobile devices, screen content videos become an important part of multimedia data. In contrast, we find community lacks a large-scale dataset for screen content video compression, which impedes the fast development of the corresponding learning-based algorithms. In order to fulfill this blank and accelerate the research of this special type of videos, we propose the Large-scale Screen Content Dataset(LSCD), which contains 714 source sequences. Meanwhile, we provide the analysis of the proposed dataset to show some features of screen content videos, which will help researchers have a better understanding of how to explore new algorithms. Besides collecting and post-processing the data to organize the dataset, we also provide a benchmark containing the performance of both traditional codec and learning-based methods.