Abstract:Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.
Abstract:Multimodal large language models (MLLMs) have achieved remarkable progress on various visual question answering and reasoning tasks leveraging instruction fine-tuning specific datasets. They can also learn from preference data annotated by human to enhance their reasoning ability and mitigate hallucinations. Most of preference data is generated from the model itself. However, existing methods require high-quality critical labels, which are costly and rely on human or proprietary models like GPT-4V. In this work, we propose Enhancing Alignment in MLLMs via Critical Observation (EACO), which aligns MLLMs by self-generated preference data using only 5k images economically. Our approach begins with collecting and refining a Scoring Evaluation Instruction-tuning dataset to train a critical evaluation model, termed the Critic. This Critic observes model responses across multiple dimensions, selecting preferred and non-preferred outputs for refined Direct Preference Optimization (DPO) tuning. To further enhance model performance, we employ an additional supervised fine-tuning stage after preference tuning. EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition. EACO achieves an 8.5% improvement over LLaVA-v1.6-Mistral-7B across multiple benchmarks. Remarkably, EACO also shows the potential critical ability in open-source MLLMs, demonstrating that EACO is a viable path to boost the competence of MLLMs.
Abstract:Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation. While recent efforts in robotics have leveraged LLMs both for high-level and low-level planning, these approaches often face significant challenges, such as hallucinations in long-horizon tasks and limited adaptability due to the generation of plans in a single pass without real-time feedback. To address these limitations, we propose a novel multi-agent LLM framework, Multi-Agent Large Language Model for Manipulation (MALMM) that distributes high-level planning and low-level control code generation across specialized LLM agents, supervised by an additional agent that dynamically manages transitions. By incorporating observations from the environment after each step, our framework effectively handles intermediate failures and enables adaptive re-planning. Unlike existing methods, our approach does not rely on pre-trained skill policies or in-context learning examples and generalizes to a variety of new tasks. We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting, thereby overcoming key limitations of existing LLM-based manipulation methods.
Abstract:The advent of AI-Generated Content (AIGC) has spurred research into automated video generation to streamline conventional processes. However, automating storytelling video production, particularly for customized narratives, remains challenging due to the complexity of maintaining subject consistency across shots. While existing approaches like Mora and AesopAgent integrate multiple agents for Story-to-Video (S2V) generation, they fall short in preserving protagonist consistency and supporting Customized Storytelling Video Generation (CSVG). To address these limitations, we propose StoryAgent, a multi-agent framework designed for CSVG. StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process. Notably, our framework includes agents for story design, storyboard generation, video creation, agent coordination, and result evaluation. Leveraging the strengths of different models, StoryAgent enhances control over the generation process, significantly improving character consistency. Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency, while a novel storyboard generation pipeline is proposed to maintain subject consistency across shots. Extensive experiments demonstrate the effectiveness of our approach in synthesizing highly consistent storytelling videos, outperforming state-of-the-art methods. Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
Abstract:Empowered by Large Language Models (LLMs), recent advancements in VideoLLMs have driven progress in various video understanding tasks. These models encode video representations through pooling or query aggregation over a vast number of visual tokens, making computational and memory costs affordable. Despite successfully providing an overall comprehension of video content, existing VideoLLMs still face challenges in achieving detailed understanding in videos due to overlooking local information in long-term videos. To tackle this challenge, we introduce LongVLM, a straightforward yet powerful VideoLLM for long video understanding, building upon the observation that long videos often consist of sequential key events, complex actions, and camera movements. Our approach proposes to decompose long videos into multiple short-term segments and encode local features for each local segment via a hierarchical token merging module. These features are concatenated in temporal order to maintain the storyline across sequential short-term segments. Additionally, we propose to integrate global semantics into each local feature to enhance context understanding. In this way, we encode video representations that incorporate both local and global information, enabling the LLM to generate comprehensive responses for long-term videos. Experimental results on the VideoChatGPT benchmark and zero-shot video question-answering datasets demonstrate the superior capabilities of our model over the previous state-of-the-art methods. Qualitative examples demonstrate that our model produces more precise responses for long videos understanding. Code will be available at https://github.com/ziplab/LongVLM.
Abstract:The creation of new datasets often presents new challenges for video recognition and can inspire novel ideas while addressing these challenges. While existing datasets mainly comprise landscape mode videos, our paper seeks to introduce portrait mode videos to the research community and highlight the unique challenges associated with this video format. With the growing popularity of smartphones and social media applications, recognizing portrait mode videos is becoming increasingly important. To this end, we have developed the first dataset dedicated to portrait mode video recognition, namely PortraitMode-400. The taxonomy of PortraitMode-400 was constructed in a data-driven manner, comprising 400 fine-grained categories, and rigorous quality assurance was implemented to ensure the accuracy of human annotations. In addition to the new dataset, we conducted a comprehensive analysis of the impact of video format (portrait mode versus landscape mode) on recognition accuracy and spatial bias due to the different formats. Furthermore, we designed extensive experiments to explore key aspects of portrait mode video recognition, including the choice of data augmentation, evaluation procedure, the importance of temporal information, and the role of audio modality. Building on the insights from our experimental results and the introduction of PortraitMode-400, our paper aims to inspire further research efforts in this emerging research area.
Abstract:A short clip of video may contain progression of multiple events and an interesting story line. A human need to capture both the event in every shot and associate them together to understand the story behind it. In this work, we present a new multi-shot video understanding benchmark Shot2Story20K with detailed shot-level captions and comprehensive video summaries. To facilitate better semantic understanding of videos, we provide captions for both visual signals and human narrations. We design several distinct tasks including single-shot video and narration captioning, multi-shot video summarization, and video retrieval with shot descriptions. Preliminary experiments show some challenges to generate a long and comprehensive video summary. Nevertheless, the generated imperfect summaries can already significantly boost the performance of existing video understanding tasks such as video question-answering, promoting an under-explored setting of video understanding with detailed summaries.
Abstract:Exploring open-vocabulary video action recognition is a promising venture, which aims to recognize previously unseen actions within any arbitrary set of categories. Existing methods typically adapt pretrained image-text models to the video domain, capitalizing on their inherent strengths in generalization. A common thread among such methods is the augmentation of visual embeddings with temporal information to improve the recognition of seen actions. Yet, they compromise with standard less-informative action descriptions, thus faltering when confronted with novel actions. Drawing inspiration from human cognitive processes, we argue that augmenting text embeddings with human prior knowledge is pivotal for open-vocabulary video action recognition. To realize this, we innovatively blend video models with Large Language Models (LLMs) to devise Action-conditioned Prompts. Specifically, we harness the knowledge in LLMs to produce a set of descriptive sentences that contain distinctive features for identifying given actions. Building upon this foundation, we further introduce a multi-modal action knowledge alignment mechanism to align concepts in video and textual knowledge encapsulated within the prompts. Extensive experiments on various video benchmarks, including zero-shot, few-shot, and base-to-novel generalization settings, demonstrate that our method not only sets new SOTA performance but also possesses excellent interpretability.
Abstract:Video Semantic Segmentation (VSS) involves assigning a semantic label to each pixel in a video sequence. Prior work in this field has demonstrated promising results by extending image semantic segmentation models to exploit temporal relationships across video frames; however, these approaches often incur significant computational costs. In this paper, we propose an efficient mask propagation framework for VSS, called MPVSS. Our approach first employs a strong query-based image segmentor on sparse key frames to generate accurate binary masks and class predictions. We then design a flow estimation module utilizing the learned queries to generate a set of segment-aware flow maps, each associated with a mask prediction from the key frame. Finally, the mask-flow pairs are warped to serve as the mask predictions for the non-key frames. By reusing predictions from key frames, we circumvent the need to process a large volume of video frames individually with resource-intensive segmentors, alleviating temporal redundancy and significantly reducing computational costs. Extensive experiments on VSPW and Cityscapes demonstrate that our mask propagation framework achieves SOTA accuracy and efficiency trade-offs. For instance, our best model with Swin-L backbone outperforms the SOTA MRCFA using MiT-B5 by 4.0% mIoU, requiring only 26% FLOPs on the VSPW dataset. Moreover, our framework reduces up to 4x FLOPs compared to the per-frame Mask2Former baseline with only up to 2% mIoU degradation on the Cityscapes validation set. Code is available at https://github.com/ziplab/MPVSS.
Abstract:The task of action detection aims at deducing both the action category and localization of the start and end moment for each action instance in a long, untrimmed video. While vision Transformers have driven the recent advances in video understanding, it is non-trivial to design an efficient architecture for action detection due to the prohibitively expensive self-attentions over a long sequence of video clips. To this end, we present an efficient hierarchical Spatio-Temporal Pyramid Transformer (STPT) for action detection, building upon the fact that the early self-attention layers in Transformers still focus on local patterns. Specifically, we propose to use local window attention to encode rich local spatio-temporal representations in the early stages while applying global attention modules to capture long-term space-time dependencies in the later stages. In this way, our STPT can encode both locality and dependency with largely reduced redundancy, delivering a promising trade-off between accuracy and efficiency. For example, with only RGB input, the proposed STPT achieves 53.6% mAP on THUMOS14, surpassing I3D+AFSD RGB model by over 10% and performing favorably against state-of-the-art AFSD that uses additional flow features with 31% fewer GFLOPs, which serves as an effective and efficient end-to-end Transformer-based framework for action detection.