Abstract:Recent studies on generalizable object detection have attracted increasing attention with additional weak supervision from large-scale datasets with image-level labels. However, weakly-supervised detection learning often suffers from image-to-box label mismatch, i.e., image-level labels do not convey precise object information. We design Language Hierarchical Self-training (LHST) that introduces language hierarchy into weakly-supervised detector training for learning more generalizable detectors. LHST expands the image-level labels with language hierarchy and enables co-regularization between the expanded labels and self-training. Specifically, the expanded labels regularize self-training by providing richer supervision and mitigating the image-to-box label mismatch, while self-training allows assessing and selecting the expanded labels according to the predicted reliability. In addition, we design language hierarchical prompt generation that introduces language hierarchy into prompt generation which helps bridge the vocabulary gaps between training and testing. Extensive experiments show that the proposed techniques achieve superior generalization performance consistently across 14 widely studied object detection datasets.
Abstract:Test-time prompt tuning, which learns prompts online with unlabelled test samples during the inference stage, has demonstrated great potential by learning effective prompts on-the-fly without requiring any task-specific annotations. However, its performance often degrades clearly along the tuning process when the prompts are continuously updated with the test data flow, and the degradation becomes more severe when the domain of test samples changes continuously. We propose HisTPT, a Historical Test-time Prompt Tuning technique that memorizes the useful knowledge of the learnt test samples and enables robust test-time prompt tuning with the memorized knowledge. HisTPT introduces three types of knowledge banks, namely, local knowledge bank, hard-sample knowledge bank, and global knowledge bank, each of which works with different mechanisms for effective knowledge memorization and test-time prompt optimization. In addition, HisTPT features an adaptive knowledge retrieval mechanism that regularizes the prediction of each test sample by adaptively retrieving the memorized knowledge. Extensive experiments show that HisTPT achieves superior prompt tuning performance consistently while handling different visual recognition tasks (e.g., image classification, semantic segmentation, and object detection) and test samples from continuously changing domains.
Abstract:Multimodal Large Language Models (MLLMs) mimic human perception and reasoning system by integrating powerful Large Language Models (LLMs) with various modality encoders (e.g., vision, audio), positioning LLMs as the "brain" and various modality encoders as sensory organs. This framework endows MLLMs with human-like capabilities, and suggests a potential pathway towards achieving artificial general intelligence (AGI). With the emergence of all-round MLLMs like GPT-4V and Gemini, a multitude of evaluation methods have been developed to assess their capabilities across different dimensions. This paper presents a systematic and comprehensive review of MLLM evaluation methods, covering the following key aspects: (1) the background of MLLMs and their evaluation; (2) "what to evaluate" that reviews and categorizes existing MLLM evaluation tasks based on the capabilities assessed, including general multimodal recognition, perception, reasoning and trustworthiness, and domain-specific applications such as socioeconomic, natural sciences and engineering, medical usage, AI agent, remote sensing, video and audio processing, 3D point cloud analysis, and others; (3) "where to evaluate" that summarizes MLLM evaluation benchmarks into general and specific benchmarks; (4) "how to evaluate" that reviews and illustrates MLLM evaluation steps and metrics; Our overarching goal is to provide valuable insights for researchers in the field of MLLM evaluation, thereby facilitating the development of more capable and reliable MLLMs. We emphasize that evaluation should be regarded as a critical discipline, essential for advancing the field of MLLMs.
Abstract:This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlighting, extreme darkness, and night scenes. A notable total of 428 participants registered for the challenge, with 22 teams ultimately making valid submissions. This paper meticulously evaluates the state-of-the-art advancements in enhancing low-light images, reflecting the significant progress and creativity in this field.
Abstract:This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
Abstract:Previous face forgery detection methods mainly focus on appearance features, which may be easily attacked by sophisticated manipulation. Considering the majority of current face manipulation methods generate fake faces based on a single frame, which do not take frame consistency and coordination into consideration, artifacts on frame sequences are more effective for face forgery detection. However, current sequence-based face forgery detection methods use general video classification networks directly, which discard the special and discriminative motion information for face manipulation detection. To this end, we propose an effective sequence-based forgery detection framework based on an existing video classification method. To make the motion features more expressive for manipulation detection, we propose an alternative motion consistency block instead of the original motion features module. To make the learned features more generalizable, we propose an auxiliary anomaly detection block. With these two specially designed improvements, we make a general video classification network achieve promising results on three popular face forgery datasets.
Abstract:Transformer-based Single Image Deraining (SID) methods have achieved remarkable success, primarily attributed to their robust capability in capturing long-range interactions. However, we've noticed that current methods handle rain-affected and unaffected regions concurrently, overlooking the disparities between these areas, resulting in confusion between rain streaks and background parts, and inabilities to obtain effective interactions, ultimately resulting in suboptimal deraining outcomes. To address the above issue, we introduce the Region Transformer (Regformer), a novel SID method that underlines the importance of independently processing rain-affected and unaffected regions while considering their combined impact for high-quality image reconstruction. The crux of our method is the innovative Region Transformer Block (RTB), which integrates a Region Masked Attention (RMA) mechanism and a Mixed Gate Forward Block (MGFB). Our RTB is used for attention selection of rain-affected and unaffected regions and local modeling of mixed scales. The RMA generates attention maps tailored to these two regions and their interactions, enabling our model to capture comprehensive features essential for rain removal. To better recover high-frequency textures and capture more local details, we develop the MGFB as a compensation module to complete local mixed scale modeling. Extensive experiments demonstrate that our model reaches state-of-the-art performance, significantly improving the image deraining quality. Our code and trained models are publicly available.
Abstract:Segment Anything Models (SAMs) like SEEM and SAM have demonstrated great potential in learning to segment anything. The core design of SAMs lies with Promptable Segmentation, which takes a handcrafted prompt as input and returns the expected segmentation mask. SAMs work with two types of prompts including spatial prompts (e.g., points) and semantic prompts (e.g., texts), which work together to prompt SAMs to segment anything on downstream datasets. Despite the important role of prompts, how to acquire suitable prompts for SAMs is largely under-explored. In this work, we examine the architecture of SAMs and identify two challenges for learning effective prompts for SAMs. To this end, we propose spatial-semantic prompt learning (SSPrompt) that learns effective semantic and spatial prompts for better SAMs. Specifically, SSPrompt introduces spatial prompt learning and semantic prompt learning, which optimize spatial prompts and semantic prompts directly over the embedding space and selectively leverage the knowledge encoded in pre-trained prompt encoders. Extensive experiments show that SSPrompt achieves superior image segmentation performance consistently across multiple widely adopted datasets.
Abstract:Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture, arising two limitations: (1) it leads to task-specific models, which require multiple models for different tasks and restrict the potential synergies from diverse tasks; (2) it leads to a pre-defined and fixed model interface that has limited interactivity and adaptability in following user' task instructions. To address them, Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions, aiming to learn from a wide range of vision tasks described by language instructions a general-purpose multimodal model that can follow arbitrary instructions and thus solve arbitrary tasks specified by the user. This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; (3) the commonly used datasets in visual instruction tuning and evaluation; (4) the review of existing VIT methods that categorizes them with a taxonomy according to both the studied vision task and the method design and highlights the major contributions, strengths, and shortcomings of them; (5) the comparison and discussion of VIT methods over various instruction-following benchmarks; (6) several challenges, open directions and possible future works in visual instruction tuning research.
Abstract:Black-box unsupervised domain adaptation (UDA) learns with source predictions of target data without accessing either source data or source models during training, and it has clear superiority in data privacy and flexibility in target network selection. However, the source predictions of target data are often noisy and training with them is prone to learning collapses. We propose BiMem, a bi-directional memorization mechanism that learns to remember useful and representative information to correct noisy pseudo labels on the fly, leading to robust black-box UDA that can generalize across different visual recognition tasks. BiMem constructs three types of memory, including sensory memory, short-term memory, and long-term memory, which interact in a bi-directional manner for comprehensive and robust memorization of learnt features. It includes a forward memorization flow that identifies and stores useful features and a backward calibration flow that rectifies features' pseudo labels progressively. Extensive experiments show that BiMem achieves superior domain adaptation performance consistently across various visual recognition tasks such as image classification, semantic segmentation and object detection.