Multimodal Large Language Models (MLLMs) mimic human perception and reasoning system by integrating powerful Large Language Models (LLMs) with various modality encoders (e.g., vision, audio), positioning LLMs as the "brain" and various modality encoders as sensory organs. This framework endows MLLMs with human-like capabilities, and suggests a potential pathway towards achieving artificial general intelligence (AGI). With the emergence of all-round MLLMs like GPT-4V and Gemini, a multitude of evaluation methods have been developed to assess their capabilities across different dimensions. This paper presents a systematic and comprehensive review of MLLM evaluation methods, covering the following key aspects: (1) the background of MLLMs and their evaluation; (2) "what to evaluate" that reviews and categorizes existing MLLM evaluation tasks based on the capabilities assessed, including general multimodal recognition, perception, reasoning and trustworthiness, and domain-specific applications such as socioeconomic, natural sciences and engineering, medical usage, AI agent, remote sensing, video and audio processing, 3D point cloud analysis, and others; (3) "where to evaluate" that summarizes MLLM evaluation benchmarks into general and specific benchmarks; (4) "how to evaluate" that reviews and illustrates MLLM evaluation steps and metrics; Our overarching goal is to provide valuable insights for researchers in the field of MLLM evaluation, thereby facilitating the development of more capable and reliable MLLMs. We emphasize that evaluation should be regarded as a critical discipline, essential for advancing the field of MLLMs.