Abstract:This paper introduces AI Guide Dog (AIGD), a lightweight egocentric navigation assistance system for visually impaired individuals, designed for real-time deployment on smartphones. AIGD addresses key challenges in blind navigation by employing a vision-only, multi-label classification approach to predict directional commands, ensuring safe traversal across diverse environments. We propose a novel technique to enable goal-based outdoor navigation by integrating GPS signals and high-level directions, while also addressing uncertain multi-path predictions for destination-free indoor navigation. Our generalized model is the first navigation assistance system to handle both goal-oriented and exploratory navigation scenarios across indoor and outdoor settings, establishing a new state-of-the-art in blind navigation. We present methods, datasets, evaluations, and deployment insights to encourage further innovations in assistive navigation systems.
Abstract:Most important reason for project failure is poor effort estimation. Software development effort estimation is needed for assigning appropriate team members for development, allocating resources for software development, binding etc. Inaccurate software estimation may lead to delay in project, over-budget or cancellation of the project. But the effort estimation models are not very efficient. In this paper, we are analyzing the new approach for estimation i.e. Neuro Fuzzy Inference System (NFIS). It is a mixture model that consolidates the components of artificial neural network with fuzzy logic for giving a better estimation.
Abstract:Mental well-being and social media have been closely related domains of study. In this research a novel model, AD prediction model, for anxious depression prediction in real-time tweets is proposed. This mixed anxiety-depressive disorder is a predominantly associated with erratic thought process, restlessness and sleeplessness. Based on the linguistic cues and user posting patterns, the feature set is defined using a 5-tuple vector <word, timing, frequency, sentiment, contrast>. An anxiety-related lexicon is built to detect the presence of anxiety indicators. Time and frequency of tweet is analyzed for irregularities and opinion polarity analytics is done to find inconsistencies in posting behaviour. The model is trained using three classifiers (multinomial na\"ive bayes, gradient boosting, and random forest) and majority voting using an ensemble voting classifier is done. Preliminary results are evaluated for tweets of sampled 100 users and the proposed model achieves a classification accuracy of 85.09%.