Terminus Group, Beijing, China
Abstract:In this paper, we propose a novel cross-attention-based generative adversarial network (GAN) for the challenging person image generation task. Cross-attention is a novel and intuitive multi-modal fusion method in which an attention/correlation matrix is calculated between two feature maps of different modalities. Specifically, we propose the novel XingGAN (or CrossingGAN), which consists of two generation branches that capture the person's appearance and shape, respectively. Moreover, we propose two novel cross-attention blocks to effectively transfer and update the person's shape and appearance embeddings for mutual improvement. This has not been considered by any other existing GAN-based image generation work. To further learn the long-range correlations between different person poses at different scales and sub-regions, we propose two novel multi-scale cross-attention blocks. To tackle the issue of independent correlation computations within the cross-attention mechanism leading to noisy and ambiguous attention weights, which hinder performance improvements, we propose a module called enhanced attention (EA). Lastly, we introduce a novel densely connected co-attention module to fuse appearance and shape features at different stages effectively. Extensive experiments on two public datasets demonstrate that the proposed method outperforms current GAN-based methods and performs on par with diffusion-based methods. However, our method is significantly faster than diffusion-based methods in both training and inference.
Abstract:The recent development in multimodal learning has greatly advanced the research in 3D scene understanding in various real-world tasks such as embodied AI. However, most existing work shares two typical constraints: 1) they are short of reasoning ability for interaction and interpretation of human intension and 2) they focus on scenarios with single-category objects only which leads to over-simplified textual descriptions due to the negligence of multi-object scenarios and spatial relations among objects. We bridge the research gaps by proposing a 3D reasoning segmentation task for multiple objects in scenes. The task allows producing 3D segmentation masks and detailed textual explanations as enriched by 3D spatial relations among objects. To this end, we create ReasonSeg3D, a large-scale and high-quality benchmark that integrates 3D spatial relations with generated question-answer pairs and 3D segmentation masks. In addition, we design MORE3D, a simple yet effective method that enables multi-object 3D reasoning segmentation with user questions and textual outputs. Extensive experiments show that MORE3D excels in reasoning and segmenting complex multi-object 3D scenes, and the created ReasonSeg3D offers a valuable platform for future exploration of 3D reasoning segmentation. The dataset and code will be released.
Abstract:The field of novel view synthesis has made significant strides thanks to the development of radiance field methods. However, most radiance field techniques are far better at novel view interpolation than novel view extrapolation where the synthesis novel views are far beyond the observed training views. We design ViewExtrapolator, a novel view synthesis approach that leverages the generative priors of Stable Video Diffusion (SVD) for realistic novel view extrapolation. By redesigning the SVD denoising process, ViewExtrapolator refines the artifact-prone views rendered by radiance fields, greatly enhancing the clarity and realism of the synthesized novel views. ViewExtrapolator is a generic novel view extrapolator that can work with different types of 3D rendering such as views rendered from point clouds when only a single view or monocular video is available. Additionally, ViewExtrapolator requires no fine-tuning of SVD, making it both data-efficient and computation-efficient. Extensive experiments demonstrate the superiority of ViewExtrapolator in novel view extrapolation. Project page: \url{https://kunhao-liu.github.io/ViewExtrapolator/}.
Abstract:Image restoration models often face the simultaneous interaction of multiple degradations in real-world scenarios. Existing approaches typically handle single or composite degradations based on scene descriptors derived from text or image embeddings. However, due to the varying proportions of different degradations within an image, these scene descriptors may not accurately differentiate between degradations, leading to suboptimal restoration in practical applications. To address this issue, we propose a novel Transformer-based restoration framework, AllRestorer. In AllRestorer, we enable the model to adaptively consider all image impairments, thereby avoiding errors from scene descriptor misdirection. Specifically, we introduce an All-in-One Transformer Block (AiOTB), which adaptively removes all degradations present in a given image by modeling the relationships between all degradations and the image embedding in latent space. To accurately address different variations potentially present within the same type of degradation and minimize ambiguity, AiOTB utilizes a composite scene descriptor consisting of both image and text embeddings to define the degradation. Furthermore, AiOTB includes an adaptive weight for each degradation, allowing for precise control of the restoration intensity. By leveraging AiOTB, AllRestorer avoids misdirection caused by inaccurate scene descriptors, achieving a 5.00 dB increase in PSNR compared to the baseline on the CDD-11 dataset.
Abstract:World models and video generation are pivotal technologies in the domain of autonomous driving, each playing a critical role in enhancing the robustness and reliability of autonomous systems. World models, which simulate the dynamics of real-world environments, and video generation models, which produce realistic video sequences, are increasingly being integrated to improve situational awareness and decision-making capabilities in autonomous vehicles. This paper investigates the relationship between these two technologies, focusing on how their structural parallels, particularly in diffusion-based models, contribute to more accurate and coherent simulations of driving scenarios. We examine leading works such as JEPA, Genie, and Sora, which exemplify different approaches to world model design, thereby highlighting the lack of a universally accepted definition of world models. These diverse interpretations underscore the field's evolving understanding of how world models can be optimized for various autonomous driving tasks. Furthermore, this paper discusses the key evaluation metrics employed in this domain, such as Chamfer distance for 3D scene reconstruction and Fr\'echet Inception Distance (FID) for assessing the quality of generated video content. By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions, emphasizing the potential of these technologies to jointly advance the performance of autonomous driving systems. The findings presented in this paper aim to provide a comprehensive understanding of how the integration of video generation and world models can drive innovation in the development of safer and more reliable autonomous vehicles.
Abstract:Large language models (LLMs) show impressive performance in solving complex languagetasks. However, its large number of parameterspresent significant challenges for the deployment and application of the model on edge devices. Compressing large language models to low bits can enable them to run on resource-constrained devices, often leading to performance degradation. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the weights corresponding to the top 1% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit format. GWQ found experimentally that utilizing the sensitive weights in the gradient localization model is more scientific compared to utilizing the sensitive weights in the Hessian matrix localization model. Compared to current quantization methods, GWQ can be applied to multiple language models and achieves lower PPL on the WikiText2 and C4 dataset. In the zero-shot task, GWQ quantized models have higher accuracy compared to other quantization methods.GWQ is also suitable for multimodal model quantization, and the quantized Qwen-VL family model is more accurate than other methods. zero-shot target detection task dataset RefCOCO outperforms the current stat-of-the-arts method SPQR. GWQ achieves 1.2x inference speedup in comparison to the original model, and effectively reduces the inference memory.
Abstract:Test-time prompt tuning, which learns prompts online with unlabelled test samples during the inference stage, has demonstrated great potential by learning effective prompts on-the-fly without requiring any task-specific annotations. However, its performance often degrades clearly along the tuning process when the prompts are continuously updated with the test data flow, and the degradation becomes more severe when the domain of test samples changes continuously. We propose HisTPT, a Historical Test-time Prompt Tuning technique that memorizes the useful knowledge of the learnt test samples and enables robust test-time prompt tuning with the memorized knowledge. HisTPT introduces three types of knowledge banks, namely, local knowledge bank, hard-sample knowledge bank, and global knowledge bank, each of which works with different mechanisms for effective knowledge memorization and test-time prompt optimization. In addition, HisTPT features an adaptive knowledge retrieval mechanism that regularizes the prediction of each test sample by adaptively retrieving the memorized knowledge. Extensive experiments show that HisTPT achieves superior prompt tuning performance consistently while handling different visual recognition tasks (e.g., image classification, semantic segmentation, and object detection) and test samples from continuously changing domains.
Abstract:Hallucination, a phenomenon where multimodal large language models~(MLLMs) tend to generate textual responses that are plausible but unaligned with the image, has become one major hurdle in various MLLM-related applications. Several benchmarks have been created to gauge the hallucination levels of MLLMs, by either raising discriminative questions about the existence of objects or introducing LLM evaluators to score the generated text from MLLMs. However, the discriminative data largely involve simple questions that are not aligned with real-world text, while the generative data involve LLM evaluators that are computationally intensive and unstable due to their inherent randomness. We propose LongHalQA, an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text. LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios, including object/image descriptions and multi-round conversations with 14/130 words and 189 words, respectively, on average. It introduces two new tasks, hallucination discrimination and hallucination completion, unifying both discriminative and generative evaluations in a single multiple-choice-question form and leading to more reliable and efficient evaluations without the need for LLM evaluators. Further, we propose an advanced pipeline that greatly facilitates the construction of future hallucination benchmarks with long and complex questions and descriptions. Extensive experiments over multiple recent MLLMs reveal various new challenges when they are handling hallucinations with long and complex textual data. Dataset and evaluation code are available at https://github.com/hanqiu-hq/LongHalQA.
Abstract:Monocular 3D object detection aims for precise 3D localization and identification of objects from a single-view image. Despite its recent progress, it often struggles while handling pervasive object occlusions that tend to complicate and degrade the prediction of object dimensions, depths, and orientations. We design MonoMAE, a monocular 3D detector inspired by Masked Autoencoders that addresses the object occlusion issue by masking and reconstructing objects in the feature space. MonoMAE consists of two novel designs. The first is depth-aware masking that selectively masks certain parts of non-occluded object queries in the feature space for simulating occluded object queries for network training. It masks non-occluded object queries by balancing the masked and preserved query portions adaptively according to the depth information. The second is lightweight query completion that works with the depth-aware masking to learn to reconstruct and complete the masked object queries. With the proposed object occlusion and completion, MonoMAE learns enriched 3D representations that achieve superior monocular 3D detection performance qualitatively and quantitatively for both occluded and non-occluded objects. Additionally, MonoMAE learns generalizable representations that can work well in new domains.
Abstract:We introduce StyleGaussian, a novel 3D style transfer technique that allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps). Leveraging 3D Gaussian Splatting (3DGS), StyleGaussian achieves style transfer without compromising its real-time rendering ability and multi-view consistency. It achieves instant style transfer with three steps: embedding, transfer, and decoding. Initially, 2D VGG scene features are embedded into reconstructed 3D Gaussians. Next, the embedded features are transformed according to a reference style image. Finally, the transformed features are decoded into the stylized RGB. StyleGaussian has two novel designs. The first is an efficient feature rendering strategy that first renders low-dimensional features and then maps them into high-dimensional features while embedding VGG features. It cuts the memory consumption significantly and enables 3DGS to render the high-dimensional memory-intensive features. The second is a K-nearest-neighbor-based 3D CNN. Working as the decoder for the stylized features, it eliminates the 2D CNN operations that compromise strict multi-view consistency. Extensive experiments show that StyleGaussian achieves instant 3D stylization with superior stylization quality while preserving real-time rendering and strict multi-view consistency. Project page: https://kunhao-liu.github.io/StyleGaussian/