Abstract:Text-to-3D content creation is a rapidly evolving research area. Given the scarcity of 3D data, current approaches often adapt pre-trained 2D diffusion models for 3D synthesis. Among these approaches, Score Distillation Sampling (SDS) has been widely adopted. However, the issue of over-smoothing poses a significant limitation on the high-fidelity generation of 3D models. To address this challenge, LucidDreamer replaces the Denoising Diffusion Probabilistic Model (DDPM) in SDS with the Denoising Diffusion Implicit Model (DDIM) to construct Interval Score Matching (ISM). However, ISM inevitably inherits inconsistencies from DDIM, causing reconstruction errors during the DDIM inversion process. This results in poor performance in the detailed generation of 3D objects and loss of content. To alleviate these problems, we propose a novel method named Exact Score Matching (ESM). Specifically, ESM leverages auxiliary variables to mathematically guarantee exact recovery in the DDIM reverse process. Furthermore, to effectively capture the dynamic changes of the original and auxiliary variables, the LoRA of a pre-trained diffusion model implements these exact paths. Extensive experiments demonstrate the effectiveness of ESM in text-to-3D generation, particularly highlighting its superiority in detailed generation.
Abstract:In this work, we propose a novel Trajectory Score Matching (TSM) method that aims to solve the pseudo ground truth inconsistency problem caused by the accumulated error in Interval Score Matching (ISM) when using the Denoising Diffusion Implicit Models (DDIM) inversion process. Unlike ISM which adopts the inversion process of DDIM to calculate on a single path, our TSM method leverages the inversion process of DDIM to generate two paths from the same starting point for calculation. Since both paths start from the same starting point, TSM can reduce the accumulated error compared to ISM, thus alleviating the problem of pseudo ground truth inconsistency. TSM enhances the stability and consistency of the model's generated paths during the distillation process. We demonstrate this experimentally and further show that ISM is a special case of TSM. Furthermore, to optimize the current multi-stage optimization process from high-resolution text to 3D generation, we adopt Stable Diffusion XL for guidance. In response to the issues of abnormal replication and splitting caused by unstable gradients during the 3D Gaussian splatting process when using Stable Diffusion XL, we propose a pixel-by-pixel gradient clipping method. Extensive experiments show that our model significantly surpasses the state-of-the-art models in terms of visual quality and performance. Code: \url{https://github.com/xingy038/Dreamer-XL}.
Abstract:With increasing concerns over data privacy and model copyrights, especially in the context of collaborations between AI service providers and data owners, an innovative SG-ZSL paradigm is proposed in this work. SG-ZSL is designed to foster efficient collaboration without the need to exchange models or sensitive data. It consists of a teacher model, a student model and a generator that links both model entities. The teacher model serves as a sentinel on behalf of the data owner, replacing real data, to guide the student model at the AI service provider's end during training. Considering the disparity of knowledge space between the teacher and student, we introduce two variants of the teacher model: the omniscient and the quasi-omniscient teachers. Under these teachers' guidance, the student model seeks to match the teacher model's performance and explores domains that the teacher has not covered. To trade off between privacy and performance, we further introduce two distinct security-level training protocols: white-box and black-box, enhancing the paradigm's adaptability. Despite the inherent challenges of real data absence in the SG-ZSL paradigm, it consistently outperforms in ZSL and GZSL tasks, notably in the white-box protocol. Our comprehensive evaluation further attests to its robustness and efficiency across various setups, including stringent black-box training protocol.
Abstract:Most of the existing works on arbitrary 3D NeRF style transfer required retraining on each single style condition. This work aims to achieve zero-shot controlled stylization in 3D scenes utilizing text or visual input as conditioning factors. We introduce ConRF, a novel method of zero-shot stylization. Specifically, due to the ambiguity of CLIP features, we employ a conversion process that maps the CLIP feature space to the style space of a pre-trained VGG network and then refine the CLIP multi-modal knowledge into a style transfer neural radiation field. Additionally, we use a 3D volumetric representation to perform local style transfer. By combining these operations, ConRF offers the capability to utilize either text or images as references, resulting in the generation of sequences with novel views enhanced by global or local stylization. Our experiment demonstrates that ConRF outperforms other existing methods for 3D scene and single-text stylization in terms of visual quality.
Abstract:The goal of our work is to generate high-quality novel views from monocular videos of complex and dynamic scenes. Prior methods, such as DynamicNeRF, have shown impressive performance by leveraging time-varying dynamic radiation fields. However, these methods have limitations when it comes to accurately modeling the motion of complex objects, which can lead to inaccurate and blurry renderings of details. To address this limitation, we propose a novel approach that builds upon a recent generalization NeRF, which aggregates nearby views onto new viewpoints. However, such methods are typically only effective for static scenes. To overcome this challenge, we introduce a module that operates in both the time and frequency domains to aggregate the features of object motion. This allows us to learn the relationship between frames and generate higher-quality images. Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets. Specifically, our approach outperforms existing methods in terms of both the accuracy and visual quality of the synthesized views.
Abstract:Self-supervised monocular depth estimation methods typically rely on the reprojection error to capture geometric relationships between successive frames in static environments. However, this assumption does not hold in dynamic objects in scenarios, leading to errors during the view synthesis stage, such as feature mismatch and occlusion, which can significantly reduce the accuracy of the generated depth maps. To address this problem, we propose a novel dynamic cost volume that exploits residual optical flow to describe moving objects, improving incorrectly occluded regions in static cost volumes used in previous work. Nevertheless, the dynamic cost volume inevitably generates extra occlusions and noise, thus we alleviate this by designing a fusion module that makes static and dynamic cost volumes compensate for each other. In other words, occlusion from the static volume is refined by the dynamic volume, and incorrect information from the dynamic volume is eliminated by the static volume. Furthermore, we propose a pyramid distillation loss to reduce photometric error inaccuracy at low resolutions and an adaptive photometric error loss to alleviate the flow direction of the large gradient in the occlusion regions. We conducted extensive experiments on the KITTI and Cityscapes datasets, and the results demonstrate that our model outperforms previously published baselines for self-supervised monocular depth estimation.