Abstract:Generating high-fidelity, controllable, and annotated training data is critical for autonomous driving. Existing methods typically generate a single data form directly from a coarse scene layout, which not only fails to output rich data forms required for diverse downstream tasks but also struggles to model the direct layout-to-data distribution. In this paper, we introduce UniScene, the first unified framework for generating three key data forms - semantic occupancy, video, and LiDAR - in driving scenes. UniScene employs a progressive generation process that decomposes the complex task of scene generation into two hierarchical steps: (a) first generating semantic occupancy from a customized scene layout as a meta scene representation rich in both semantic and geometric information, and then (b) conditioned on occupancy, generating video and LiDAR data, respectively, with two novel transfer strategies of Gaussian-based Joint Rendering and Prior-guided Sparse Modeling. This occupancy-centric approach reduces the generation burden, especially for intricate scenes, while providing detailed intermediate representations for the subsequent generation stages. Extensive experiments demonstrate that UniScene outperforms previous SOTAs in the occupancy, video, and LiDAR generation, which also indeed benefits downstream driving tasks.
Abstract:Visual anagrams are images that change appearance upon transformation, like flipping or rotation. With the advent of diffusion models, generating such optical illusions can be achieved by averaging noise across multiple views during the reverse denoising process. However, we observe two critical failure modes in this approach: (i) concept segregation, where concepts in different views are independently generated, which can not be considered a true anagram, and (ii) concept domination, where certain concepts overpower others. In this work, we cast the visual anagram generation problem in a multi-task learning setting, where different viewpoint prompts are analogous to different tasks,and derive denoising trajectories that align well across tasks simultaneously. At the core of our designed framework are two newly introduced techniques, where (i) an anti-segregation optimization strategy that promotes overlap in cross-attention maps between different concepts, and (ii) a noise vector balancing method that adaptively adjusts the influence of different tasks. Additionally, we observe that directly averaging noise predictions yields suboptimal performance because statistical properties may not be preserved, prompting us to derive a noise variance rectification method. Extensive qualitative and quantitative experiments demonstrate our method's superior ability to generate visual anagrams spanning diverse concepts.
Abstract:The creation of 3D scenes has traditionally been both labor-intensive and costly, requiring designers to meticulously configure 3D assets and environments. Recent advancements in generative AI, including text-to-3D and image-to-3D methods, have dramatically reduced the complexity and cost of this process. However, current techniques for editing complex 3D scenes continue to rely on generally interactive multi-step, 2D-to-3D projection methods and diffusion-based techniques, which often lack precision in control and hamper real-time performance. In this work, we propose 3DSceneEditor, a fully 3D-based paradigm for real-time, precise editing of intricate 3D scenes using Gaussian Splatting. Unlike conventional methods, 3DSceneEditor operates through a streamlined 3D pipeline, enabling direct manipulation of Gaussians for efficient, high-quality edits based on input prompts.The proposed framework (i) integrates a pre-trained instance segmentation model for semantic labeling; (ii) employs a zero-shot grounding approach with CLIP to align target objects with user prompts; and (iii) applies scene modifications, such as object addition, repositioning, recoloring, replacing, and deletion directly on Gaussians. Extensive experimental results show that 3DSceneEditor achieves superior editing precision and speed with respect to current SOTA 3D scene editing approaches, establishing a new benchmark for efficient and interactive 3D scene customization.
Abstract:Vision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
Abstract:An early warning of future system failure is essential for conducting predictive maintenance and enhancing system availability. This paper introduces a three-step framework for assessing system health to predict imminent system breakdowns. First, the Gaussian Derivative Change-Point Detection (GDCPD) algorithm is proposed for detecting changes in the high-dimensional feature space. GDCPD conducts a multivariate Change-Point Detection (CPD) by implementing Gaussian derivative processes for identifying change locations on critical system features, as these changes eventually will lead to system failure. To assess the significance of these changes, Weighted Mahalanobis Distance (WMD) is applied in both offline and online analyses. In the offline setting, WMD helps establish a threshold that determines significant system variations, while in the online setting, it facilitates real-time monitoring, issuing alarms for potential future system breakdowns. Utilizing the insights gained from the GDCPD and monitoring scheme, Long Short-Term Memory (LSTM) network is then employed to estimate the Remaining Useful Life (RUL) of the system. The experimental study of a real-world system demonstrates the effectiveness of the proposed methodology in accurately forecasting system failures well before they occur. By integrating CPD with real-time monitoring and RUL prediction, this methodology significantly advances system health monitoring and early warning capabilities.
Abstract:3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow, one of the most challenging computational problems of our century. At the core of 3D PTV is the dual-frame fluid motion estimation algorithm, which tracks particles across two consecutive frames. Recently, deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation; however, they heavily depend on large volumes of labeled data. In this paper, we introduce a new method that is completely self-supervised and notably outperforms its fully-supervised counterparts while requiring only 1% of the training samples (without labels) used by previous methods. Our method features a novel zero-divergence loss that is specific to the domain of turbulent flow. Inspired by the success of splat operation in high-dimensional filtering and random fields, we propose a splat-based implementation for this loss which is both efficient and effective. The self-supervised nature of our method naturally supports test-time optimization, leading to the development of a tailored Dynamic Velocimetry Enhancer (DVE) module. We demonstrate that strong cross-domain robustness is achieved through test-time optimization on unseen leave-one-out synthetic domains and real physical/biological domains. Code, data and models are available at https://github.com/Forrest-110/FluidMotionNet.
Abstract:In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Code will soon be available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
Abstract:We address an important problem in ecology called Species Distribution Modeling (SDM), whose goal is to predict whether a species exists at a certain position on Earth. In particular, we tackle a challenging version of this task, where we learn from presence-only data in a community-sourced dataset, model a large number of species simultaneously, and do not use any additional environmental information. Previous work has used neural implicit representations to construct models that achieve promising results. However, implicit representations often generate predictions of limited spatial precision. We attribute this limitation to their inherently global formulation and inability to effectively capture local feature variations. This issue is especially pronounced with presence-only data and a large number of species. To address this, we propose a hybrid embedding scheme that combines both implicit and explicit embeddings. Specifically, the explicit embedding is implemented with a multiresolution hashgrid, enabling our models to better capture local information. Experiments demonstrate that our results exceed other works by a large margin on various standard benchmarks, and that the hybrid representation is better than both purely implicit and explicit ones. Qualitative visualizations and comprehensive ablation studies reveal that our hybrid representation successfully addresses the two main challenges. Our code is open-sourced at https://github.com/Shiran-Yuan/HSR-SDM.
Abstract:Due to the nature of enhancement--the absence of paired ground-truth information, high-level vision tasks have been recently employed to evaluate the performance of low-light image enhancement. A widely-used manner is to see how accurately an object detector trained on enhanced low-light images by different candidates can perform with respect to annotated semantic labels. In this paper, we first demonstrate that the mentioned approach is generally prone to overfitting, and thus diminishes its measurement reliability. In search of a proper evaluation metric, we propose LIME-Bench, the first online benchmark platform designed to collect human preferences for low-light enhancement, providing a valuable dataset for validating the correlation between human perception and automated evaluation metrics. We then customize LIME-Eval, a novel evaluation framework that utilizes detectors pre-trained on standard-lighting datasets without object annotations, to judge the quality of enhanced images. By adopting an energy-based strategy to assess the accuracy of output confidence maps, our LIME-Eval can simultaneously bypass biases associated with retraining detectors and circumvent the reliance on annotations for dim images. Comprehensive experiments are provided to reveal the effectiveness of our LIME-Eval. Our benchmark platform (https://huggingface.co/spaces/lime-j/eval) and code (https://github.com/lime-j/lime-eval) are available online.
Abstract:The generation of high-quality 3D car assets is essential for various applications, including video games, autonomous driving, and virtual reality. Current 3D generation methods utilizing NeRF or 3D-GS as representations for 3D objects, generate a Lambertian object under fixed lighting and lack separated modelings for material and global illumination. As a result, the generated assets are unsuitable for relighting under varying lighting conditions, limiting their applicability in downstream tasks. To address this challenge, we propose a novel relightable 3D object generative framework that automates the creation of 3D car assets, enabling the swift and accurate reconstruction of a vehicle's geometry, texture, and material properties from a single input image. Our approach begins with introducing a large-scale synthetic car dataset comprising over 1,000 high-precision 3D vehicle models. We represent 3D objects using global illumination and relightable 3D Gaussian primitives integrating with BRDF parameters. Building on this representation, we introduce a feed-forward model that takes images as input and outputs both relightable 3D Gaussians and global illumination parameters. Experimental results demonstrate that our method produces photorealistic 3D car assets that can be seamlessly integrated into road scenes with different illuminations, which offers substantial practical benefits for industrial applications.