Abstract:Neural-networks-driven intelligent data-plane (NN-driven IDP) is becoming an emerging topic for excellent accuracy and high performance. Meanwhile we argue that NN-driven IDP should satisfy three design goals: the flexibility to support various NNs models, the low-latency-high-throughput inference performance, and the data-plane-unawareness harming no performance and functionality. Unfortunately, existing work either over-modify NNs for IDP, or insert inline pipelined accelerators into the data-plane, failing to meet the flexibility and unawareness goals. In this paper, we propose Kaleidoscope, a flexible and high-performance co-processor located at the bypass of the data-plane. To address the challenge of meeting three design goals, three key techniques are presented. The programmable run-to-completion accelerators are developed for flexible inference. To further improve performance, we design a scalable inference engine which completes low-latency and low-cost inference for the mouse flows, and perform complex NNs with high-accuracy for the elephant flows. Finally, raw-bytes-based NNs are introduced, which help to achieve unawareness. We prototype Kaleidoscope on both FPGA and ASIC library. In evaluation on six NNs models, Kaleidoscope reaches 256-352 ns inference latency and 100 Gbps throughput with negligible influence on the data-plane. The on-board tested NNs perform state-of-the-art accuracy among other NN-driven IDP, exhibiting the the significant impact of flexibility on enhancing traffic analysis accuracy.
Abstract:Accurate trajectory prediction is crucial for ensuring safe and efficient autonomous driving. However, most existing methods overlook complex interactions between traffic participants that often govern their future trajectories. In this paper, we propose SocialFormer, an agent interaction-aware trajectory prediction method that leverages the semantic relationship between the target vehicle and surrounding vehicles by making use of the road topology. We also introduce an edge-enhanced heterogeneous graph transformer (EHGT) as the aggregator in a graph neural network (GNN) to encode the semantic and spatial agent interaction information. Additionally, we introduce a temporal encoder based on gated recurrent units (GRU) to model the temporal social behavior of agent movements. Finally, we present an information fusion framework that integrates agent encoding, lane encoding, and agent interaction encoding for a holistic representation of the traffic scene. We evaluate SocialFormer for the trajectory prediction task on the popular nuScenes benchmark and achieve state-of-the-art performance.
Abstract:Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene including traffic participants, road topology, traffic signs as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. This paper describes a method SemanticFormer to predict multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. We extract high-level information in the form of semantic meta-paths from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. The proposed architecture comprises a hierarchical heterogeneous graph encoder, which can capture spatio-temporal and relational information across agents and between agents and road elements, and a predictor that fuses the different encodings and decodes trajectories with probabilities. Finally, a refinement module evaluates permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to the state-of-the-art methods.
Abstract:Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles. To achieve this objective it is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules. Although studies demonstrated the potential of leveraging heterogeneous context for improving trajectory prediction, state-of-the-art deep learning approaches still rely on a limited subset of this information. This is mainly due to the limited availability of comprehensive representations. This paper presents an approach that utilizes knowledge graphs to model the diverse entities and their semantic connections within traffic scenes. Further, we present nuScenes Knowledge Graph (nSKG), a knowledge graph for the nuScenes dataset, that models explicitly all scene participants and road elements, as well as their semantic and spatial relationships. To facilitate the usage of the nSKG via graph neural networks for trajectory prediction, we provide the data in a format, ready-to-use by the PyG library. All artefacts can be found here: https://github.com/boschresearch/nuScenes_Knowledge_Graph