Abstract:Sequential recommender systems (SRSs) aim to suggest next item for a user based on her historical interaction sequences. Recently, many research efforts have been devoted to attenuate the influence of noisy items in sequences by either assigning them with lower attention weights or discarding them directly. The major limitation of these methods is that the former would still prone to overfit noisy items while the latter may overlook informative items. To the end, in this paper, we propose a novel model named Multi-level Sequence Denoising with Cross-signal Contrastive Learning (MSDCCL) for sequential recommendation. To be specific, we first introduce a target-aware user interest extractor to simultaneously capture users' long and short term interest with the guidance of target items. Then, we develop a multi-level sequence denoising module to alleviate the impact of noisy items by employing both soft and hard signal denoising strategies. Additionally, we extend existing curriculum learning by simulating the learning pattern of human beings. It is worth noting that our proposed model can be seamlessly integrated with a majority of existing recommendation models and significantly boost their effectiveness. Experimental studies on five public datasets are conducted and the results demonstrate that the proposed MSDCCL is superior to the state-of-the-art baselines. The source code is publicly available at https://github.com/lalunex/MSDCCL/tree/main.
Abstract:Search engines these days can serve datasets as search results. Datasets get picked up by search technologies based on structured descriptions on their official web pages, informed by metadata ontologies such as the Dataset content type of schema.org. Despite this promotion of the content type dataset as a first-class citizen of search results, a vast proportion of datasets, particularly research datasets, still need to be made discoverable and, therefore, largely remain unused. This is due to the sheer volume of datasets released every day and the inability of metadata to reflect a dataset's content and context accurately. This work seeks to improve this situation for a specific class of datasets, namely research datasets, which are the result of research endeavors and are accompanied by a scholarly publication. We propose the ORKG-Dataset content type, a specialized branch of the Open Research Knowledge Graoh (ORKG) platform, which provides descriptive information and a semantic model for research datasets, integrating them with their accompanying scholarly publications. This work aims to establish a standardized framework for recording and reporting research datasets within the ORKG-Dataset content type. This, in turn, increases research dataset transparency on the web for their improved discoverability and applied use. In this paper, we present a proposal -- the minimum FAIR, comparable, semantic description of research datasets in terms of salient properties of their supporting publication. We design a specific application of the ORKG-Dataset semantic model based on 40 diverse research datasets on scientific information extraction.
Abstract:This paper describes our participation in the Shared Task on Software Mentions Disambiguation (SOMD), with a focus on improving relation extraction in scholarly texts through Generative Language Models (GLMs) using single-choice question-answering. The methodology prioritises the use of in-context learning capabilities of GLMs to extract software-related entities and their descriptive attributes, such as distributive information. Our approach uses Retrieval-Augmented Generation (RAG) techniques and GLMs for Named Entity Recognition (NER) and Attributive NER to identify relationships between extracted software entities, providing a structured solution for analysing software citations in academic literature. The paper provides a detailed description of our approach, demonstrating how using GLMs in a single-choice QA paradigm can greatly enhance IE methodologies. Our participation in the SOMD shared task highlights the importance of precise software citation practices and showcases our system's ability to overcome the challenges of disambiguating and extracting relationships between software mentions. This sets the groundwork for future research and development in this field.
Abstract:Pre-trained Language Models (PLMs) are known to contain various kinds of knowledge. One method to infer relational knowledge is through the use of cloze-style prompts, where a model is tasked to predict missing subjects or objects. Typically, designing these prompts is a tedious task because small differences in syntax or semantics can have a substantial impact on knowledge retrieval performance. Simultaneously, evaluating the impact of either prompt syntax or information is challenging due to their interdependence. We designed CONPARE-LAMA - a dedicated probe, consisting of 34 million distinct prompts that facilitate comparison across minimal paraphrases. These paraphrases follow a unified meta-template enabling the controlled variation of syntax and semantics across arbitrary relations. CONPARE-LAMA enables insights into the independent impact of either syntactical form or semantic information of paraphrases on the knowledge retrieval performance of PLMs. Extensive knowledge retrieval experiments using our probe reveal that prompts following clausal syntax have several desirable properties in comparison to appositive syntax: i) they are more useful when querying PLMs with a combination of supplementary information, ii) knowledge is more consistently recalled across different combinations of supplementary information, and iii) they decrease response uncertainty when retrieving known facts. In addition, range information can boost knowledge retrieval performance more than domain information, even though domain information is more reliably helpful across syntactic forms.
Abstract:Twitter has emerged as a global hub for engaging in online conversations and as a research corpus for various disciplines that have recognized the significance of its user-generated content. Argument mining is an important analytical task for processing and understanding online discourse. Specifically, it aims to identify the structural elements of arguments, denoted as information and inference. These elements, however, are not static and may require context within the conversation they are in, yet there is a lack of data and annotation frameworks addressing this dynamic aspect on Twitter. We contribute TACO, the first dataset of Twitter Arguments utilizing 1,814 tweets covering 200 entire conversations spanning six heterogeneous topics annotated with an agreement of 0.718 Krippendorff's alpha among six experts. Second, we provide our annotation framework, incorporating definitions from the Cambridge Dictionary, to define and identify argument components on Twitter. Our transformer-based classifier achieves an 85.06\% macro F1 baseline score in detecting arguments. Moreover, our data reveals that Twitter users tend to engage in discussions involving informed inferences and information. TACO serves multiple purposes, such as training tweet classifiers to manage tweets based on inference and information elements, while also providing valuable insights into the conversational reply patterns of tweets.
Abstract:Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles. To achieve this objective it is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules. Although studies demonstrated the potential of leveraging heterogeneous context for improving trajectory prediction, state-of-the-art deep learning approaches still rely on a limited subset of this information. This is mainly due to the limited availability of comprehensive representations. This paper presents an approach that utilizes knowledge graphs to model the diverse entities and their semantic connections within traffic scenes. Further, we present nuScenes Knowledge Graph (nSKG), a knowledge graph for the nuScenes dataset, that models explicitly all scene participants and road elements, as well as their semantic and spatial relationships. To facilitate the usage of the nSKG via graph neural networks for trajectory prediction, we provide the data in a format, ready-to-use by the PyG library. All artefacts can be found here: https://github.com/boschresearch/nuScenes_Knowledge_Graph
Abstract:Named Entity Recognition (NER) models play a crucial role in various NLP tasks, including information extraction (IE) and text understanding. In academic writing, references to machine learning models and datasets are fundamental components of various computer science publications and necessitate accurate models for identification. Despite the advancements in NER, existing ground truth datasets do not treat fine-grained types like ML model and model architecture as separate entity types, and consequently, baseline models cannot recognize them as such. In this paper, we release a corpus of 100 manually annotated full-text scientific publications and a first baseline model for 10 entity types centered around ML models and datasets. In order to provide a nuanced understanding of how ML models and datasets are mentioned and utilized, our dataset also contains annotations for informal mentions like "our BERT-based model" or "an image CNN". You can find the ground truth dataset and code to replicate model training at https://data.gesis.org/gsap/gsap-ner.
Abstract:Large Language Models (LLMs) have taken Knowledge Representation -- and the world -- by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.
Abstract:Open Access (OA) facilitates access to articles. But, authors or funders often must pay the publishing costs preventing authors who do not receive financial support from participating in OA publishing and citation advantage for OA articles. OA may exacerbate existing inequalities in the publication system rather than overcome them. To investigate this, we studied 522,664 articles published by Springer Nature. Employing statistical methods, we describe the relationship between authors affiliated with countries from different income levels, their choice of publishing (OA or closed access), and the citation impact of their papers. A machine learning classification method helped us to explore the association between OA-publishing and attributes of the author, especially eligibility for APC-waivers or discounts, journal, country, and paper. The results indicate that authors eligible for the APC-waivers publish more in gold-OA-journals than other authors. In contrast, authors eligible for an APC discount have the lowest ratio of OA publications, leading to the assumption that this discount insufficiently motivates authors to publish in a gold-OA-journal. The rank of journals is a significant driver for publishing in a gold-OA-journal, whereas the OA option is mostly avoided in hybrid journals. Seniority, experience with OA publications, and the scientific field are the most decisive factors in OA-publishing.
Abstract:Web search is among the most frequent online activities. Whereas traditional information retrieval techniques focus on the information need behind a user query, previous work has shown that user behaviour and interaction can provide important signals for understanding the underlying intent of a search mission. An established taxonomy distinguishes between transactional, navigational and informational search missions, where in particular the latter involve a learning goal, i.e. the intent to acquire knowledge about a particular topic. We introduce a supervised approach for classifying online search missions into either of these categories by utilising a range of features obtained from the user interactions during an online search mission. Applying our model to a dataset of real-world query logs, we show that search missions can be categorised with an average F1 score of 63% and accuracy of 69%, while performance on informational and navigational missions is particularly promising (F1>75%). This suggests the potential to utilise such supervised classification during online search to better facilitate retrieval and ranking as well as to improve affiliated services, such as targeted online ads.