Abstract:The unwavering disparity in labeled resources between resource-rich languages and those considered low-resource remains a significant impediment for Large Language Models (LLMs). Recent strides in cross-lingual in-context learning (X-ICL), mainly through semantically aligned examples retrieved from multilingual pre-trained transformers, have shown promise in mitigating this issue. However, our investigation reveals that LLMs intrinsically reward in-language semantically aligned cross-lingual instances over direct cross-lingual semantic alignments, with a pronounced disparity in handling time-sensitive queries in the X-ICL setup. Such queries demand sound temporal reasoning ability from LLMs, yet the advancements have predominantly focused on English. This study aims to bridge this gap by improving temporal reasoning capabilities in low-resource languages. To this end, we introduce mTEMPREASON a temporal reasoning dataset aimed at the varied degrees of low-resource languages and propose Cross-Lingual Time-Sensitive Semantic Alignment (CLiTSSA), a novel method to improve temporal reasoning in these contexts. To facilitate this, we construct an extension of mTEMPREASON comprising pairs of parallel cross-language temporal queries along with their anticipated in-language semantic similarity scores. Our empirical evidence underscores the superior performance of CLiTSSA compared to established baselines across three languages - Romanian, German, and French, encompassing three temporal tasks and including a diverse set of four contemporaneous LLMs. This marks a significant step forward in addressing resource disparity in the context of temporal reasoning across languages.
Abstract:Large Language Models (LLMs) have demonstrated strong performance as knowledge repositories, enabling models to understand user queries and generate accurate and context-aware responses. Extensive evaluation setups have corroborated the positive correlation between the retrieval capability of LLMs and the frequency of entities in their pretraining corpus. We take the investigation further by conducting a comprehensive analysis of the internal reasoning and retrieval mechanisms of LLMs. Our work focuses on three critical dimensions - the impact of entity popularity, the models' sensitivity to lexical variations in query formulation, and the progression of hidden state representations across LLM layers. Our preliminary findings reveal that popular questions facilitate early convergence of internal states toward the correct answer. However, as the popularity of a query increases, retrieved attributes across lexical variations become increasingly dissimilar and less accurate. Interestingly, we find that LLMs struggle to disentangle facts, grounded in distinct relations, from their parametric memory when dealing with highly popular subjects. Through a case study, we explore these latent strains within LLMs when processing highly popular queries, a phenomenon we term information anxiety. The emergence of information anxiety in LLMs underscores the adversarial injection in the form of linguistic variations and calls for a more holistic evaluation of frequently occurring entities.
Abstract:Large Language Models (LLMs) are highly resource-intensive to fine-tune due to their enormous size. While low-rank adaptation is a prominent parameter-efficient fine-tuning approach, it suffers from sensitivity to hyperparameter choices, leading to instability in model performance on fine-tuning downstream tasks. This paper highlights the importance of effective parameterization in low-rank fine-tuning to reduce estimator variance and enhance the stability of final model outputs. We propose MonteCLoRA, an efficient fine-tuning technique, employing Monte Carlo estimation to learn an unbiased posterior estimation of low-rank parameters with low expected variance, which stabilizes fine-tuned LLMs with only O(1) additional parameters. MonteCLoRA shows significant improvements in accuracy and robustness, achieving up to 3.8% higher accuracy and 8.6% greater robustness than existing efficient fine-tuning methods on natural language understanding tasks with pre-trained RoBERTa-base. Furthermore, in generative tasks with pre-trained LLaMA-1-7B, MonteCLoRA demonstrates robust zero-shot performance with 50% lower variance than the contemporary efficient fine-tuning methods. The theoretical and empirical results presented in the paper underscore how parameterization and hyperpriors balance exploration-exploitation in the low-rank parametric space, therefore leading to more optimal and robust parameter estimation during efficient fine-tuning.
Abstract:Large Language Models trained on web-scale text acquire language generation abilities that can solve a wide range of tasks, particularly when task knowledge is refined into the generative prior using in-context examples. However, spurious features learned from noisy data hinder their generalizability. Supervised finetuning can introduce task specificity, but introduce data inefficiency. Prior studies indicate that (i) noisy neural circuitries coexist with generalizable ones within LLMs, and (ii) finetuning typically enhances (or suppresses) existing abilities without introducing newer ones. Building upon these, we propose TaRot, a novel method for task adaptation. TaRot intervenes in the neural circuitries using learnable rotation matrices that are optimized using Bayesian Optimization, on labelled samples in the order of standard few-shot prompting examples. Experiments on multiple classification and generation tasks using LLMs of varying sizes reveal the efficacy of TaRot, improving upon both zero- as well as few-shot performance, with average improvements (across models and tasks) of 23.81% and 11.15%, respectively. The source code is available at https://github.com/joykirat18/TaRot
Abstract:Despite their remarkable capabilities, Large Language Models (LLMs) are found to be surprisingly sensitive to minor variations in prompts, often generating significantly divergent outputs in response to minor variations in the prompts, such as spelling errors, alteration of wording or the prompt template. However, while assessing the quality of an LLM, the focus often tends to be solely on its performance on downstream tasks, while very little to no attention is paid to prompt sensitivity. To fill this gap, we propose POSIX - a novel PrOmpt Sensitivity IndeX as a reliable measure of prompt sensitivity, thereby offering a more comprehensive evaluation of LLM performance. The key idea behind POSIX is to capture the relative change in loglikelihood of a given response upon replacing the corresponding prompt with a different intent-preserving prompt. We provide thorough empirical evidence demonstrating the efficacy of POSIX in capturing prompt sensitivity and subsequently use it to measure and thereby compare prompt sensitivity of various open-source LLMs. We find that merely increasing the parameter count or instruction tuning does not necessarily reduce prompt sensitivity whereas adding some few-shot exemplars, even just one, almost always leads to significant decrease in prompt sensitivity. We also find that alterations to prompt template lead to the highest sensitivity in the case of MCQtype tasks, whereas paraphrasing results in the highest sensitivity in open-ended generation tasks. The code for reproducing our results is open-sourced at https://github.com/kowndinyarenduchintala/POSIX.
Abstract:For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear. By including additional context in prompts, we comprehensively analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected. Our findings on two LLMs, five languages, and six datasets reveal that mimicking persona-based attributes leads to annotation variability. Meanwhile, incorporating geographical signals leads to better regional alignment. We also find that the LLMs are sensitive to numerical anchors, indicating the ability to leverage community-based flagging efforts and exposure to adversaries. Our work provides preliminary guidelines and highlights the nuances of applying LLMs in culturally sensitive cases.
Abstract:Reliable prediction of the All India Summer Monsoon Rainfall (AISMR) is pivotal for informed policymaking for the country, impacting the lives of billions of people. However, accurate simulation of AISMR has been a persistent challenge due to the complex interplay of various muti-scale factors and the inherent variability of the monsoon system. This research focuses on adapting and fine-tuning the latest LLM model, PatchTST, to accurately predict AISMR with a lead time of three months. The fine-tuned PatchTST model, trained with historical AISMR data, the Ni\~no3.4 index, and categorical Indian Ocean Dipole values, outperforms several popular neural network models and statistical models. This fine-tuned LLM model exhibits an exceptionally low RMSE percentage of 0.07% and a Spearman correlation of 0.976. This is particularly impressive, since it is nearly 80% more accurate than the best-performing NN models. The model predicts an above-normal monsoon for the year 2024, with an accumulated rainfall of 921.6 mm in the month of June-September for the entire country.
Abstract:Large Language Models (LLMs) and AI assistants driven by these models are experiencing exponential growth in usage among both expert and amateur users. In this work, we focus on evaluating the reliability of current LLMs as science communicators. Unlike existing benchmarks, our approach emphasizes assessing these models on scientific questionanswering tasks that require a nuanced understanding and awareness of answerability. We introduce a novel dataset, SCiPS-QA, comprising 742 Yes/No queries embedded in complex scientific concepts, along with a benchmarking suite that evaluates LLMs for correctness and consistency across various criteria. We benchmark three proprietary LLMs from the OpenAI GPT family and 13 open-access LLMs from the Meta Llama-2, Llama-3, and Mistral families. While most open-access models significantly underperform compared to GPT-4 Turbo, our experiments identify Llama-3-70B as a strong competitor, often surpassing GPT-4 Turbo in various evaluation aspects. We also find that even the GPT models exhibit a general incompetence in reliably verifying LLM responses. Moreover, we observe an alarming trend where human evaluators are deceived by incorrect responses from GPT-4 Turbo.
Abstract:The prolific use of Large Language Models (LLMs) as an alternate knowledge base requires them to be factually consistent, necessitating both correctness and consistency traits for paraphrased queries. Recently, significant attempts have been made to benchmark datasets and metrics to evaluate LLMs for these traits. However, structural simplicity (subject-relation-object) and contemporary association in their query formulation limit the broader definition of factuality and consistency. In this study, we introduce TeCFaP, a novel Temporally Consistent Factuality Probe task to expand the consistent factuality probe in the temporal dimension. To this end, we propose TEMP-COFAC, a high-quality dataset of prefix-style English query paraphrases. Subsequently, we extend the definitions of existing metrics to represent consistent factuality across temporal dimension. We experiment with a diverse set of LLMs and find most of them performing poorly on TeCFaP. Next, we propose a novel solution CoTSeLF (Consistent-Time-Sensitive Learning Framework) combining multi-task instruction tuning (MT-IT) with consistent-time-sensitive reinforcement learning (CTSRL) to improve temporally consistent factuality in LLMs. Our experiments demonstrate the efficacy of CoTSeLF over several baselines.
Abstract:Fine-tuning large language models (LLMs) on downstream tasks requires substantial computational resources. A class of parameter-efficient fine-tuning (PEFT) aims to mitigate these computational challenges by selectively fine-tuning only a small fraction of the model parameters. Although computationally efficient, these techniques often fail to match the performance of fully fine-tuned models, primarily due to inherent biases introduced during parameter selection. Traditional selective PEFT techniques use a fixed set of parameters based on a predefined budget (a process also known as unmasking), failing to capture parameter importance dynamically and often ending up exceeding the budget. We introduce $\text{ID}^3$, a novel selective PEFT method that calculates parameter importance continually and dynamically unmasks parameters by balancing exploration and exploitation in parameter selection. Our empirical study on 15 tasks spanning natural language understanding and generative tasks demonstrates the effectiveness of our method compared to fixed-masking-based PEFT techniques. We analytically show that $\text{ID}^3$ reduces the number of gradient updates by a factor of two, enhancing computational efficiency. $\text{ID}^3$ is robust to random initialization of neurons and, therefore, can be seamlessly integrated into existing additive and reparametrization-based PEFT modules such as adapters and LoRA for dynamic sparsification.