Abstract:Neural scaling laws have revolutionized the design and optimization of large-scale AI models by revealing predictable relationships between model size, dataset volume, and computational resources. Early research established power-law relationships in model performance, leading to compute-optimal scaling strategies. However, recent studies highlighted their limitations across architectures, modalities, and deployment contexts. Sparse models, mixture-of-experts, retrieval-augmented learning, and multimodal models often deviate from traditional scaling patterns. Moreover, scaling behaviors vary across domains such as vision, reinforcement learning, and fine-tuning, underscoring the need for more nuanced approaches. In this survey, we synthesize insights from over 50 studies, examining the theoretical foundations, empirical findings, and practical implications of scaling laws. We also explore key challenges, including data efficiency, inference scaling, and architecture-specific constraints, advocating for adaptive scaling strategies tailored to real-world applications. We suggest that while scaling laws provide a useful guide, they do not always generalize across all architectures and training strategies.
Abstract:Counterspeech has been popular as an effective approach to counter online hate speech, leading to increasing research interest in automated counterspeech generation using language models. However, this field lacks standardised evaluation protocols and robust automated evaluation metrics that align with human judgement. Current automatic evaluation methods, primarily based on similarity metrics, do not effectively capture the complex and independent attributes of counterspeech quality, such as contextual relevance, aggressiveness, or argumentative coherence. This has led to an increased dependency on labor-intensive human evaluations to assess automated counter-speech generation methods. To address these challenges, we introduce CSEval, a novel dataset and framework for evaluating counterspeech quality across four dimensions: contextual-relevance, aggressiveness, argument-coherence, and suitableness. Furthermore, we propose Auto-Calibrated COT for Counterspeech Evaluation (ACE), a prompt-based method with auto-calibrated chain-of-thoughts (CoT) for scoring counterspeech using large language models. Our experiments show that ACE outperforms traditional metrics like ROUGE, METEOR, and BertScore in correlating with human judgement, indicating a significant advancement in automated counterspeech evaluation.
Abstract:The ever-increasing size of large language models (LLMs) presents significant challenges for deployment due to their heavy computational and memory requirements. Current model pruning techniques attempt to alleviate these issues by relying heavily on external calibration datasets to determine which parameters to prune or compress, thus limiting their flexibility and scalability across different compression ratios. Moreover, these methods often cause severe performance degradation, particularly in downstream tasks, when subjected to higher compression rates. In this paper, we propose PruneNet, a novel model compression method that addresses these limitations by reformulating model pruning as a policy learning process. PruneNet decouples the pruning process from the model architecture, eliminating the need for calibration datasets. It learns a stochastic pruning policy to assess parameter importance solely based on intrinsic model properties while preserving the spectral structure to minimize information loss. PruneNet can compress the LLaMA-2-7B model in just 15 minutes, achieving over 80% retention of its zero-shot performance with a 30% compression ratio, outperforming existing methods that retain only 75% performance. Furthermore, on complex multitask language understanding tasks, PruneNet demonstrates its robustness by preserving up to 80% performance of the original model, proving itself a superior alternative to conventional structured compression techniques.
Abstract:A taxonomy is a hierarchical graph containing knowledge to provide valuable insights for various web applications. Online retail organizations like Microsoft and Amazon utilize taxonomies to improve product recommendations and optimize advertisement by enhancing query interpretation. However, the manual construction of taxonomies requires significant human effort. As web content continues to expand at an unprecedented pace, existing taxonomies risk becoming outdated, struggling to incorporate new and emerging information effectively. As a consequence, there is a growing need for dynamic taxonomy expansion to keep them relevant and up-to-date. Existing taxonomy expansion methods often rely on classical word embeddings to represent entities. However, these embeddings fall short in capturing hierarchical polysemy, where an entity's meaning can vary based on its position in the hierarchy and its surrounding context. To address this challenge, we introduce QuanTaxo, an innovative quantum-inspired framework for taxonomy expansion. QuanTaxo encodes entity representations in quantum space, effectively modeling hierarchical polysemy by leveraging the principles of Hilbert space to capture interference effects between entities, yielding richer and more nuanced representations. Comprehensive experiments on four real-world benchmark datasets show that QuanTaxo significantly outperforms classical embedding models, achieving substantial improvements of 18.45% in accuracy, 20.5% in Mean Reciprocal Rank, and 17.87% in Wu & Palmer metrics across eight classical embedding-based baselines. We further highlight the superiority of QuanTaxo through extensive ablation and case studies.
Abstract:Bilingual lexical processing is shaped by the complex interplay of phonological, orthographic, and semantic features of two languages within an integrated mental lexicon. In humans, this is evident in the ease with which cognate words - words similar in both orthographic form and meaning (e.g., blind, meaning "sightless" in both English and German) - are processed, compared to the challenges posed by interlingual homographs, which share orthographic form but differ in meaning (e.g., gift, meaning "present" in English but "poison" in German). We investigate how multilingual Large Language Models (LLMs) handle such phenomena, focusing on English-Spanish, English-French, and English-German cognates, non-cognate, and interlingual homographs. Specifically, we evaluate their ability to disambiguate meanings and make semantic judgments, both when these word types are presented in isolation or within sentence contexts. Our findings reveal that while certain LLMs demonstrate strong performance in recognizing cognates and non-cognates in isolation, they exhibit significant difficulty in disambiguating interlingual homographs, often performing below random baselines. This suggests LLMs tend to rely heavily on orthographic similarities rather than semantic understanding when interpreting interlingual homographs. Further, we find LLMs exhibit difficulty in retrieving word meanings, with performance in isolative disambiguation tasks having no correlation with semantic understanding. Finally, we study how the LLM processes interlingual homographs in incongruent sentences. We find models to opt for different strategies in understanding English and non-English homographs, highlighting a lack of a unified approach to handling cross-lingual ambiguities.
Abstract:The crisis of mental health issues is escalating. Effective counseling serves as a critical lifeline for individuals suffering from conditions like PTSD, stress, etc. Therapists forge a crucial therapeutic bond with clients, steering them towards positivity. Unfortunately, the massive shortage of professionals, high costs, and mental health stigma pose significant barriers to consulting therapists. As a substitute, Virtual Mental Health Assistants (VMHAs) have emerged in the digital healthcare space. However, most existing VMHAs lack the commonsense to understand the nuanced sentiments of clients to generate effective responses. To this end, we propose EmpRes, a novel sentiment-guided mechanism incorporating commonsense awareness for generating responses. By leveraging foundation models and harnessing commonsense knowledge, EmpRes aims to generate responses that effectively shape the client's sentiment towards positivity. We evaluate the performance of EmpRes on HOPE, a benchmark counseling dataset, and observe a remarkable performance improvement compared to the existing baselines across a suite of qualitative and quantitative metrics. Moreover, our extensive empirical analysis and human evaluation show that the generation ability of EmpRes is well-suited and, in some cases, surpasses the gold standard. Further, we deploy EmpRes as a chat interface for users seeking mental health support. We address the deployed system's effectiveness through an exhaustive user study with a significant positive response. Our findings show that 91% of users find the system effective, 80% express satisfaction, and over 85.45% convey a willingness to continue using the interface and recommend it to others, demonstrating the practical applicability of EmpRes in addressing the pressing challenges of mental health support, emphasizing user feedback, and ethical considerations in a real-world context.
Abstract:In mental health counseling, a variety of earlier studies have focused on dialogue modeling. However, most of these studies give limited to no emphasis on the quality of interaction between a patient and a therapist. The therapeutic bond between a patient and a therapist directly correlates with effective mental health counseling. It involves developing the patient's trust on the therapist over the course of counseling. To assess the therapeutic bond in counseling, we introduce trust as a therapist-assistive metric. Our definition of trust involves patients' willingness and openness to express themselves and, consequently, receive better care. We conceptualize it as a dynamic trajectory observable through textual interactions during the counseling. To facilitate trust modeling, we present MENTAL-TRUST, a novel counseling dataset comprising manual annotation of 212 counseling sessions with first-of-its-kind seven expert-verified ordinal trust levels. We project our problem statement as an ordinal classification task for trust quantification and propose a new benchmark, TrustBench, comprising a suite of classical and state-of-the-art language models on MENTAL-TRUST. We evaluate the performance across a suite of metrics and lay out an exhaustive set of findings. Our study aims to unfold how trust evolves in therapeutic interactions.
Abstract:Memes act as cryptic tools for sharing sensitive ideas, often requiring contextual knowledge to interpret. This makes moderating multimodal memes challenging, as existing works either lack high-quality datasets on nuanced hate categories or rely on low-quality social media visuals. Here, we curate two novel multimodal hate speech datasets, MHS and MHS-Con, that capture fine-grained hateful abstractions in regular and confounding scenarios, respectively. We benchmark these datasets against several competing baselines. Furthermore, we introduce SAFE-MEME (Structured reAsoning FramEwork), a novel multimodal Chain-of-Thought-based framework employing Q&A-style reasoning (SAFE-MEME-QA) and hierarchical categorization (SAFE-MEME-H) to enable robust hate speech detection in memes. SAFE-MEME-QA outperforms existing baselines, achieving an average improvement of approximately 5% and 4% on MHS and MHS-Con, respectively. In comparison, SAFE-MEME-H achieves an average improvement of 6% in MHS while outperforming only multimodal baselines in MHS-Con. We show that fine-tuning a single-layer adapter within SAFE-MEME-H outperforms fully fine-tuned models in regular fine-grained hateful meme detection. However, the fully fine-tuning approach with a Q&A setup is more effective for handling confounding cases. We also systematically examine the error cases, offering valuable insights into the robustness and limitations of the proposed structured reasoning framework for analyzing hateful memes.
Abstract:The unwavering disparity in labeled resources between resource-rich languages and those considered low-resource remains a significant impediment for Large Language Models (LLMs). Recent strides in cross-lingual in-context learning (X-ICL), mainly through semantically aligned examples retrieved from multilingual pre-trained transformers, have shown promise in mitigating this issue. However, our investigation reveals that LLMs intrinsically reward in-language semantically aligned cross-lingual instances over direct cross-lingual semantic alignments, with a pronounced disparity in handling time-sensitive queries in the X-ICL setup. Such queries demand sound temporal reasoning ability from LLMs, yet the advancements have predominantly focused on English. This study aims to bridge this gap by improving temporal reasoning capabilities in low-resource languages. To this end, we introduce mTEMPREASON a temporal reasoning dataset aimed at the varied degrees of low-resource languages and propose Cross-Lingual Time-Sensitive Semantic Alignment (CLiTSSA), a novel method to improve temporal reasoning in these contexts. To facilitate this, we construct an extension of mTEMPREASON comprising pairs of parallel cross-language temporal queries along with their anticipated in-language semantic similarity scores. Our empirical evidence underscores the superior performance of CLiTSSA compared to established baselines across three languages - Romanian, German, and French, encompassing three temporal tasks and including a diverse set of four contemporaneous LLMs. This marks a significant step forward in addressing resource disparity in the context of temporal reasoning across languages.
Abstract:Large Language Models (LLMs) have demonstrated strong performance as knowledge repositories, enabling models to understand user queries and generate accurate and context-aware responses. Extensive evaluation setups have corroborated the positive correlation between the retrieval capability of LLMs and the frequency of entities in their pretraining corpus. We take the investigation further by conducting a comprehensive analysis of the internal reasoning and retrieval mechanisms of LLMs. Our work focuses on three critical dimensions - the impact of entity popularity, the models' sensitivity to lexical variations in query formulation, and the progression of hidden state representations across LLM layers. Our preliminary findings reveal that popular questions facilitate early convergence of internal states toward the correct answer. However, as the popularity of a query increases, retrieved attributes across lexical variations become increasingly dissimilar and less accurate. Interestingly, we find that LLMs struggle to disentangle facts, grounded in distinct relations, from their parametric memory when dealing with highly popular subjects. Through a case study, we explore these latent strains within LLMs when processing highly popular queries, a phenomenon we term information anxiety. The emergence of information anxiety in LLMs underscores the adversarial injection in the form of linguistic variations and calls for a more holistic evaluation of frequently occurring entities.