Abstract:Non-native speakers with limited vocabulary often struggle to name specific objects despite being able to visualize them, e.g., people outside Australia searching for numbats. Further, users may want to search for such elusive objects with difficult-to-sketch interactions, e.g., numbat digging in the ground. In such common but complex situations, users desire a search interface that accepts composite multimodal queries comprising hand-drawn sketches of difficult-to-name but easy-to-draw objects and text describing difficult-to-sketch but easy-to-verbalize object attributes or interaction with the scene. This novel problem statement distinctly differs from the previously well-researched TBIR (text-based image retrieval) and SBIR (sketch-based image retrieval) problems. To study this under-explored task, we curate a dataset, CSTBIR (Composite Sketch+Text Based Image Retrieval), consisting of approx. 2M queries and 108K natural scene images. Further, as a solution to this problem, we propose a pretrained multimodal transformer-based baseline, STNET (Sketch+Text Network), that uses a hand-drawn sketch to localize relevant objects in the natural scene image, and encodes the text and image to perform image retrieval. In addition to contrastive learning, we propose multiple training objectives that improve the performance of our model. Extensive experiments show that our proposed method outperforms several state-of-the-art retrieval methods for text-only, sketch-only, and composite query modalities. We make the dataset and code available at our project website.
Abstract:Writing comprehensive and accurate descriptions of technical drawings in patent documents is crucial to effective knowledge sharing and enabling the replication and protection of intellectual property. However, automation of this task has been largely overlooked by the research community. To this end, we introduce PatentDesc-355K, a novel large-scale dataset containing ~355K patent figures along with their brief and detailed textual descriptions extracted from more than 60K US patent documents. In addition, we propose PatentLMM - a novel multimodal large language model specifically tailored to generate high-quality descriptions of patent figures. Our proposed PatentLMM comprises two key components: (i) PatentMME, a specialized multimodal vision encoder that captures the unique structural elements of patent figures, and (ii) PatentLLaMA, a domain-adapted version of LLaMA fine-tuned on a large collection of patents. Extensive experiments demonstrate that training a vision encoder specifically designed for patent figures significantly boosts the performance, generating coherent descriptions compared to fine-tuning similar-sized off-the-shelf multimodal models. PatentDesc-355K and PatentLMM pave the way for automating the understanding of patent figures, enabling efficient knowledge sharing and faster drafting of patent documents. We make the code and data publicly available.
Abstract:Curriculum learning has been used to improve the quality of text generation systems by ordering the training samples according to a particular schedule in various tasks. In the context of data-to-text generation (DTG), previous studies used various difficulty criteria to order the training samples for monolingual DTG. These criteria, however, do not generalize to the crosslingual variant of the problem and do not account for noisy data. We explore multiple criteria that can be used for improving the performance of cross-lingual DTG systems with noisy data using two curriculum schedules. Using the alignment score criterion for ordering samples and an annealing schedule to train the model, we show increase in BLEU score by up to 4 points, and improvements in faithfulness and coverage of generations by 5-15% on average across 11 Indian languages and English in 2 separate datasets. We make code and data publicly available
Abstract:As large language models become increasingly central to solving complex tasks, the challenge of optimizing long, unstructured prompts has become critical. Existing optimization techniques often struggle to effectively handle such prompts, leading to suboptimal performance. We introduce SCULPT (Systematic Tuning of Long Prompts), a novel framework that systematically refines long prompts by structuring them hierarchically and applying an iterative actor-critic mechanism. To enhance robustness and generalizability, SCULPT utilizes two complementary feedback mechanisms: Preliminary Assessment, which assesses the prompt's structure before execution, and Error Assessment, which diagnoses and addresses errors post-execution. By aggregating feedback from these mechanisms, SCULPT avoids overfitting and ensures consistent improvements in performance. Our experimental results demonstrate significant accuracy gains and enhanced robustness, particularly in handling erroneous and misaligned prompts. SCULPT consistently outperforms existing approaches, establishing itself as a scalable solution for optimizing long prompts across diverse and real-world tasks.
Abstract:Previous studies on question generation from videos have mostly focused on generating questions about common objects and attributes and hence are not entity-centric. In this work, we focus on the generation of entity-centric information-seeking questions from videos. Such a system could be useful for video-based learning, recommending ``People Also Ask'' questions, video-based chatbots, and fact-checking. Our work addresses three key challenges: identifying question-worthy information, linking it to entities, and effectively utilizing multimodal signals. Further, to the best of our knowledge, there does not exist a large-scale dataset for this task. Most video question generation datasets are on TV shows, movies, or human activities or lack entity-centric information-seeking questions. Hence, we contribute a diverse dataset of YouTube videos, VideoQuestions, consisting of 411 videos with 2265 manually annotated questions. We further propose a model architecture combining Transformers, rich context signals (titles, transcripts, captions, embeddings), and a combination of cross-entropy and contrastive loss function to encourage entity-centric question generation. Our best method yields BLEU, ROUGE, CIDEr, and METEOR scores of 71.3, 78.6, 7.31, and 81.9, respectively, demonstrating practical usability. We make the code and dataset publicly available. https://github.com/thePhukan/ECIS-VQG
Abstract:Transformer-based models have revolutionized the field of natural language processing. To understand why they perform so well and to assess their reliability, several studies have focused on questions such as: Which linguistic properties are encoded by these models, and to what extent? How robust are these models in encoding linguistic properties when faced with perturbations in the input text? However, these studies have mainly focused on BERT and the English language. In this paper, we investigate similar questions regarding encoding capability and robustness for 8 linguistic properties across 13 different perturbations in 6 Indic languages, using 9 multilingual Transformer models (7 universal and 2 Indic-specific). To conduct this study, we introduce a novel multilingual benchmark dataset, IndicSentEval, containing approximately $\sim$47K sentences. Surprisingly, our probing analysis of surface, syntactic, and semantic properties reveals that while almost all multilingual models demonstrate consistent encoding performance for English, they show mixed results for Indic languages. As expected, Indic-specific multilingual models capture linguistic properties in Indic languages better than universal models. Intriguingly, universal models broadly exhibit better robustness compared to Indic-specific models, particularly under perturbations such as dropping both nouns and verbs, dropping only verbs, or keeping only nouns. Overall, this study provides valuable insights into probing and perturbation-specific strengths and weaknesses of popular multilingual Transformer-based models for different Indic languages. We make our code and dataset publicly available [https://tinyurl.com/IndicSentEval}].
Abstract:Assessing the quality of Natural Language Generation (NLG) outputs, such as those produced by large language models (LLMs), poses significant challenges. Traditional approaches involve either resource-intensive human evaluations or automatic metrics, which often exhibit a low correlation with human judgment. In this study, we propose Review-Feedback-Reason (ReFeR), a novel evaluation framework for NLG using LLM agents. We rigorously test ReFeR using two pre-existing benchmark datasets on diverse NLG tasks. The proposed framework not only enhances the accuracy of NLG evaluation, surpassing previous benchmarks by $\sim$20\%, but also generates constructive feedback and significantly improves collective reasoning. This feedback is then leveraged for the creation of instruction-tuning datasets, which, when used to fine-tune smaller models like Mistral-7B, makes them extremely good evaluators, yielding a better correlation with human evaluations and performance nearly on par with GPT-3.5. We highlight the effectiveness of our methodology through its application on three reasoning benchmarks, where it outperforms most of the state-of-the-art methods, and also outperforms the reasoning capabilities of models like GPT-3.5 Turbo by $\sim$11.67\% and GPT-4 by $\sim$1\% on an average.
Abstract:Identifying user's opinions and stances in long conversation threads on various topics can be extremely critical for enhanced personalization, market research, political campaigns, customer service, conflict resolution, targeted advertising, and content moderation. Hence, training language models to automate this task is critical. However, to train such models, gathering manual annotations has multiple challenges: 1) It is time-consuming and costly; 2) Conversation threads could be very long, increasing chances of noisy annotations; and 3) Interpreting instances where a user changes their opinion within a conversation is difficult because often such transitions are subtle and not expressed explicitly. Inspired by the recent success of large language models (LLMs) for complex natural language processing (NLP) tasks, we leverage Mistral Large and GPT-4 to automate the human annotation process on the following two tasks while also providing reasoning: i) User Stance classification, which involves labeling a user's stance of a post in a conversation on a five-point scale; ii) User Dogmatism classification, which deals with labeling a user's overall opinion in the conversation on a four-point scale. The majority voting on zero-shot, one-shot, and few-shot annotations from these two LLMs on 764 multi-user Reddit conversations helps us curate the USDC dataset. USDC is then used to finetune and instruction-tune multiple deployable small language models for the 5-class stance and 4-class dogmatism classification tasks. We make the code and dataset publicly available [https://anonymous.4open.science/r/USDC-0F7F].
Abstract:Lack of diverse perspectives causes neutrality bias in Wikipedia content leading to millions of worldwide readers getting exposed by potentially inaccurate information. Hence, neutrality bias detection and mitigation is a critical problem. Although previous studies have proposed effective solutions for English, no work exists for Indian languages. First, we contribute two large datasets, mWikiBias and mWNC, covering 8 languages, for the bias detection and mitigation tasks respectively. Next, we investigate the effectiveness of popular multilingual Transformer-based models for the two tasks by modeling detection as a binary classification problem and mitigation as a style transfer problem. We make the code and data publicly available.
Abstract:Azure Cognitive Search (ACS) has emerged as a major contender in "Search as a Service" cloud products in recent years. However, one of the major challenges for ACS users is to improve the relevance of the search results for their specific usecases. In this paper, we propose a novel method to find the optimal ACS configuration that maximizes search relevance for a specific usecase (product search, document search...) The proposed solution improves key online marketplace metrics such as click through rates (CTR) by formulating the search relevance problem as hyperparameter tuning. We have observed significant improvements in real-world search call to action (CTA) rate in multiple marketplaces by introducing optimized weights generated from the proposed approach.