Abstract:Visual Question Answering (VQA) is an interdisciplinary field that bridges the gap between computer vision (CV) and natural language processing(NLP), enabling Artificial Intelligence(AI) systems to answer questions about images. Since its inception in 2015, VQA has rapidly evolved, driven by advances in deep learning, attention mechanisms, and transformer-based models. This survey traces the journey of VQA from its early days, through major breakthroughs, such as attention mechanisms, compositional reasoning, and the rise of vision-language pre-training methods. We highlight key models, datasets, and techniques that shaped the development of VQA systems, emphasizing the pivotal role of transformer architectures and multimodal pre-training in driving recent progress. Additionally, we explore specialized applications of VQA in domains like healthcare and discuss ongoing challenges, such as dataset bias, model interpretability, and the need for common-sense reasoning. Lastly, we discuss the emerging trends in large multimodal language models and the integration of external knowledge, offering insights into the future directions of VQA. This paper aims to provide a comprehensive overview of the evolution of VQA, highlighting both its current state and potential advancements.
Abstract:Pronoun translation is a longstanding challenge in neural machine translation (NMT), often requiring inter-sentential context to ensure linguistic accuracy. To address this, we introduce ProNMT, a novel framework designed to enhance pronoun and overall translation quality in context-aware machine translation systems. ProNMT leverages Quality Estimation (QE) models and a unique Pronoun Generation Likelihood-Based Feedback mechanism to iteratively fine-tune pre-trained NMT models without relying on extensive human annotations. The framework combines QE scores with pronoun-specific rewards to guide training, ensuring improved handling of linguistic nuances. Extensive experiments demonstrate significant gains in pronoun translation accuracy and general translation quality across multiple metrics. ProNMT offers an efficient, scalable, and context-aware approach to improving NMT systems, particularly in translating context-dependent elements like pronouns.
Abstract:Hallucination, a persistent challenge plaguing language models, undermines their efficacy and trustworthiness in various natural language processing endeavors by generating responses that deviate from factual accuracy or coherence. This paper addresses language model hallucination by integrating curated knowledge graph (KG) triples to anchor responses in empirical data. We meticulously select and integrate relevant KG triples tailored to specific contexts, enhancing factual grounding and alignment with input. Our contribution involves constructing a comprehensive KG repository from Wikipedia and refining data to spotlight essential information for model training. By imbuing language models with access to this curated knowledge, we aim to generate both linguistically fluent responses and deeply rooted in factual accuracy and context relevance. This integration mitigates hallucinations by providing a robust foundation of information, enabling models to draw upon a rich reservoir of factual data during response generation. Experimental evaluations demonstrate the effectiveness of multiple approaches in reducing hallucinatory responses, underscoring the role of curated knowledge graphs in improving the reliability and trustworthiness of language model outputs.
Abstract:Given the advancements in conversational artificial intelligence, the evaluation and assessment of Large Language Models (LLMs) play a crucial role in ensuring optimal performance across various conversational tasks. In this paper, we present a comprehensive study that thoroughly evaluates the capabilities and limitations of five prevalent LLMs: Llama, OPT, Falcon, Alpaca, and MPT. The study encompasses various conversational tasks, including reservation, empathetic response generation, mental health and legal counseling, persuasion, and negotiation. To conduct the evaluation, an extensive test setup is employed, utilizing multiple evaluation criteria that span from automatic to human evaluation. This includes using generic and task-specific metrics to gauge the LMs' performance accurately. From our evaluation, no single model emerges as universally optimal for all tasks. Instead, their performance varies significantly depending on the specific requirements of each task. While some models excel in certain tasks, they may demonstrate comparatively poorer performance in others. These findings emphasize the importance of considering task-specific requirements and characteristics when selecting the most suitable LM for conversational applications.
Abstract:Hate speech, offensive language, aggression, racism, sexism, and other abusive language are common phenomena in social media. There is a need for Artificial Intelligence(AI)based intervention which can filter hate content at scale. Most existing hate speech detection solutions have utilized the features by treating each post as an isolated input instance for the classification. This paper addresses this issue by introducing a unique model that improves hate speech identification for the English language by utilising intra-user and inter-user-based information. The experiment is conducted over single-task learning (STL) and multi-task learning (MTL) paradigms that use deep neural networks, such as convolutional neural networks (CNN), gated recurrent unit (GRU), bidirectional encoder representations from the transformer (BERT), and A Lite BERT (ALBERT). We use three benchmark datasets and conclude that combining certain user features with textual features gives significant improvements in macro-F1 and weighted-F1.
Abstract:In Medical question-answering (QA) tasks, the need for effective systems is pivotal in delivering accurate responses to intricate medical queries. However, existing approaches often struggle to grasp the intricate logical structures and relationships inherent in medical contexts, thus limiting their capacity to furnish precise and nuanced answers. In this work, we address this gap by proposing a novel Abstractive QA system MedLogic-AQA that harnesses First Order Logic (FOL) based rules extracted from both context and questions to generate well-grounded answers. Through initial experimentation, we identified six pertinent first-order logical rules, which were then used to train a Logic-Understanding (LU) model capable of generating logical triples for a given context, question, and answer. These logic triples are then integrated into the training of MedLogic-AQA, enabling effective and coherent reasoning during answer generation. This distinctive fusion of logical reasoning with abstractive QA equips our system to produce answers that are logically sound, relevant, and engaging. Evaluation with respect to both automated and human-based demonstrates the robustness of MedLogic-AQA against strong baselines. Through empirical assessments and case studies, we validate the efficacy of MedLogic-AQA in elevating the quality and comprehensiveness of answers in terms of reasoning as well as informativeness
Abstract:Detecting offensive memes is crucial, yet standard deep neural network systems often remain opaque. Various input attribution-based methods attempt to interpret their behavior, but they face challenges with implicitly offensive memes and non-causal attributions. To address these issues, we propose a framework based on a Structural Causal Model (SCM). In this framework, VisualBERT is trained to predict the class of an input meme based on both meme input and causal concepts, allowing for transparent interpretation. Our qualitative evaluation demonstrates the framework's effectiveness in understanding model behavior, particularly in determining whether the model was right due to the right reason, and in identifying reasons behind misclassification. Additionally, quantitative analysis assesses the significance of proposed modelling choices, such as de-confounding, adversarial learning, and dynamic routing, and compares them with input attribution methods. Surprisingly, we find that input attribution methods do not guarantee causality within our framework, raising questions about their reliability in safety-critical applications. The project page is at: https://newcodevelop.github.io/causality_adventure/
Abstract:The integrity of the peer-review process is vital for maintaining scientific rigor and trust within the academic community. With the steady increase in the usage of large language models (LLMs) like ChatGPT in academic writing, there is a growing concern that AI-generated texts could compromise scientific publishing, including peer-reviews. Previous works have focused on generic AI-generated text detection or have presented an approach for estimating the fraction of peer-reviews that can be AI-generated. Our focus here is to solve a real-world problem by assisting the editor or chair in determining whether a review is written by ChatGPT or not. To address this, we introduce the Term Frequency (TF) model, which posits that AI often repeats tokens, and the Review Regeneration (RR) model, which is based on the idea that ChatGPT generates similar outputs upon re-prompting. We stress test these detectors against token attack and paraphrasing. Finally, we propose an effective defensive strategy to reduce the effect of paraphrasing on our models. Our findings suggest both our proposed methods perform better than the other AI text detectors. Our RR model is more robust, although our TF model performs better than the RR model without any attacks. We make our code, dataset, and model public.
Abstract:Previous studies on question generation from videos have mostly focused on generating questions about common objects and attributes and hence are not entity-centric. In this work, we focus on the generation of entity-centric information-seeking questions from videos. Such a system could be useful for video-based learning, recommending ``People Also Ask'' questions, video-based chatbots, and fact-checking. Our work addresses three key challenges: identifying question-worthy information, linking it to entities, and effectively utilizing multimodal signals. Further, to the best of our knowledge, there does not exist a large-scale dataset for this task. Most video question generation datasets are on TV shows, movies, or human activities or lack entity-centric information-seeking questions. Hence, we contribute a diverse dataset of YouTube videos, VideoQuestions, consisting of 411 videos with 2265 manually annotated questions. We further propose a model architecture combining Transformers, rich context signals (titles, transcripts, captions, embeddings), and a combination of cross-entropy and contrastive loss function to encourage entity-centric question generation. Our best method yields BLEU, ROUGE, CIDEr, and METEOR scores of 71.3, 78.6, 7.31, and 81.9, respectively, demonstrating practical usability. We make the code and dataset publicly available. https://github.com/thePhukan/ECIS-VQG
Abstract:In recent years, there has been a significant rise in the phenomenon of hate against women on social media platforms, particularly through the use of misogynous memes. These memes often target women with subtle and obscure cues, making their detection a challenging task for automated systems. Recently, Large Language Models (LLMs) have shown promising results in reasoning using Chain-of-Thought (CoT) prompting to generate the intermediate reasoning chains as the rationale to facilitate multimodal tasks, but often neglect cultural diversity and key aspects like emotion and contextual knowledge hidden in the visual modalities. To address this gap, we introduce a Multimodal Multi-hop CoT (M3Hop-CoT) framework for Misogynous meme identification, combining a CLIP-based classifier and a multimodal CoT module with entity-object-relationship integration. M3Hop-CoT employs a three-step multimodal prompting principle to induce emotions, target awareness, and contextual knowledge for meme analysis. Our empirical evaluation, including both qualitative and quantitative analysis, validates the efficacy of the M3Hop-CoT framework on the SemEval-2022 Task 5 (MAMI task) dataset, highlighting its strong performance in the macro-F1 score. Furthermore, we evaluate the model's generalizability by evaluating it on various benchmark meme datasets, offering a thorough insight into the effectiveness of our approach across different datasets.