Abstract:With the exponential rise in user-generated web content on social media, the proliferation of abusive languages towards an individual or a group across the different sections of the internet is also rapidly increasing. It is very challenging for human moderators to identify the offensive contents and filter those out. Deep neural networks have shown promise with reasonable accuracy for hate speech detection and allied applications. However, the classifiers are heavily dependent on the size and quality of the training data. Such a high-quality large data set is not easy to obtain. Moreover, the existing data sets that have emerged in recent times are not created following the same annotation guidelines and are often concerned with different types and sub-types related to hate. To solve this data sparsity problem, and to obtain more global representative features, we propose a Convolution Neural Network (CNN) based multi-task learning models (MTLs)\footnote{code is available at https://github.com/imprasshant/STL-MTL} to leverage information from multiple sources. Empirical analysis performed on three benchmark datasets shows the efficacy of the proposed approach with the significant improvement in accuracy and F-score to obtain state-of-the-art performance with respect to the existing systems.
Abstract:The phenomenal growth on the internet has helped in empowering individual's expressions, but the misuse of freedom of expression has also led to the increase of various cyber crimes and anti-social activities. Hate speech is one such issue that needs to be addressed very seriously as otherwise, this could pose threats to the integrity of the social fabrics. In this paper, we proposed deep learning approaches utilizing various embeddings for detecting various types of hate speeches in social media. Detecting hate speech from a large volume of text, especially tweets which contains limited contextual information also poses several practical challenges. Moreover, the varieties in user-generated data and the presence of various forms of hate speech makes it very challenging to identify the degree and intention of the message. Our experiments on three publicly available datasets of different domains shows a significant improvement in accuracy and F1-score.