Abstract:Hallucination, a persistent challenge plaguing language models, undermines their efficacy and trustworthiness in various natural language processing endeavors by generating responses that deviate from factual accuracy or coherence. This paper addresses language model hallucination by integrating curated knowledge graph (KG) triples to anchor responses in empirical data. We meticulously select and integrate relevant KG triples tailored to specific contexts, enhancing factual grounding and alignment with input. Our contribution involves constructing a comprehensive KG repository from Wikipedia and refining data to spotlight essential information for model training. By imbuing language models with access to this curated knowledge, we aim to generate both linguistically fluent responses and deeply rooted in factual accuracy and context relevance. This integration mitigates hallucinations by providing a robust foundation of information, enabling models to draw upon a rich reservoir of factual data during response generation. Experimental evaluations demonstrate the effectiveness of multiple approaches in reducing hallucinatory responses, underscoring the role of curated knowledge graphs in improving the reliability and trustworthiness of language model outputs.
Abstract:Given the advancements in conversational artificial intelligence, the evaluation and assessment of Large Language Models (LLMs) play a crucial role in ensuring optimal performance across various conversational tasks. In this paper, we present a comprehensive study that thoroughly evaluates the capabilities and limitations of five prevalent LLMs: Llama, OPT, Falcon, Alpaca, and MPT. The study encompasses various conversational tasks, including reservation, empathetic response generation, mental health and legal counseling, persuasion, and negotiation. To conduct the evaluation, an extensive test setup is employed, utilizing multiple evaluation criteria that span from automatic to human evaluation. This includes using generic and task-specific metrics to gauge the LMs' performance accurately. From our evaluation, no single model emerges as universally optimal for all tasks. Instead, their performance varies significantly depending on the specific requirements of each task. While some models excel in certain tasks, they may demonstrate comparatively poorer performance in others. These findings emphasize the importance of considering task-specific requirements and characteristics when selecting the most suitable LM for conversational applications.