Abstract:Autoencoders have been used for finding interpretable and disentangled features underlying neural network representations in both image and text domains. While the efficacy and pitfalls of such methods are well-studied in vision, there is a lack of corresponding results, both qualitative and quantitative, for the text domain. We aim to address this gap by training sparse autoencoders (SAEs) on a synthetic testbed of formal languages. Specifically, we train SAEs on the hidden representations of models trained on formal languages (Dyck-2, Expr, and English PCFG) under a wide variety of hyperparameter settings, finding interpretable latents often emerge in the features learned by our SAEs. However, similar to vision, we find performance turns out to be highly sensitive to inductive biases of the training pipeline. Moreover, we show latents correlating to certain features of the input do not always induce a causal impact on model's computation. We thus argue that causality has to become a central target in SAE training: learning of causal features should be incentivized from the ground-up. Motivated by this, we propose and perform preliminary investigations for an approach that promotes learning of causally relevant features in our formal language setting.
Abstract:Existing datasets for tabular question answering typically focus exclusively on text within cells. However, real-world data is inherently multimodal, often blending images such as symbols, faces, icons, patterns, and charts with textual content in tables. With the evolution of AI models capable of multimodal reasoning, it is pertinent to assess their efficacy in handling such structured data. This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data. We explore their ability to reason on tables that integrate both images and text, introducing MMTabQA, a new dataset designed for this purpose. Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs, understanding visual context, and comparing visual content across images. These findings establish our dataset as a robust benchmark for advancing AI's comprehension and capabilities in analyzing multimodal structured data.
Abstract:Large Language Models (LLMs) have showcased impressive abilities in generating fluent responses to diverse user queries. However, concerns regarding the potential misuse of such texts in journalism, educational, and academic contexts have surfaced. SemEval 2024 introduces the task of Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection, aiming to develop automated systems for identifying machine-generated text and detecting potential misuse. In this paper, we i) propose a RoBERTa-BiLSTM based classifier designed to classify text into two categories: AI-generated or human ii) conduct a comparative study of our model with baseline approaches to evaluate its effectiveness. This paper contributes to the advancement of automatic text detection systems in addressing the challenges posed by machine-generated text misuse. Our architecture ranked 46th on the official leaderboard with an accuracy of 80.83 among 125.
Abstract:Creating multilingual task-oriented dialogue (TOD) agents is challenging due to the high cost of training data acquisition. Following the research trend of improving training data efficiency, we show for the first time, that in-context learning is sufficient to tackle multilingual TOD. To handle the challenging dialogue state tracking (DST) subtask, we break it down to simpler steps that are more compatible with in-context learning where only a handful of few-shot examples are used. We test our approach on the multilingual TOD dataset X-RiSAWOZ, which has 12 domains in Chinese, English, French, Korean, Hindi, and code-mixed Hindi-English. Our turn-by-turn DST accuracy on the 6 languages range from 55.6% to 80.3%, seemingly worse than the SOTA results from fine-tuned models that achieve from 60.7% to 82.8%; our BLEU scores in the response generation (RG) subtask are also significantly lower than SOTA. However, after manual evaluation of the validation set, we find that by correcting gold label errors and improving dataset annotation schema, GPT-4 with our prompts can achieve (1) 89.6%-96.8% accuracy in DST, and (2) more than 99% correct response generation across different languages. This leads us to conclude that current automatic metrics heavily underestimate the effectiveness of in-context learning.
Abstract:While significant work has been done in the field of NLP on vertical thinking, which involves primarily logical thinking, little work has been done towards lateral thinking, which involves looking at problems from an unconventional perspective and defying existing conceptions and notions. Towards this direction, SemEval 2024 introduces the task of BRAINTEASER, which involves two types of questions -- Sentence Puzzles and Word Puzzles that defy conventional common-sense reasoning and constraints. In this paper, we tackle both types of questions using few-shot prompting on GPT-3.5 and gain insights regarding the difference in the nature of the two types. Our prompting strategy placed us 26th on the leaderboard for the Sentence Puzzle and 15th on the Word Puzzle task.
Abstract:Current computational approaches for analysing or generating code-mixed sentences do not explicitly model "naturalness" or "acceptability" of code-mixed sentences, but rely on training corpora to reflect distribution of acceptable code-mixed sentences. Modelling human judgement for the acceptability of code-mixed text can help in distinguishing natural code-mixed text and enable quality-controlled generation of code-mixed text. To this end, we construct Cline - a dataset containing human acceptability judgements for English-Hindi (en-hi) code-mixed text. Cline is the largest of its kind with 16,642 sentences, consisting of samples sourced from two sources: synthetically generated code-mixed text and samples collected from online social media. Our analysis establishes that popular code-mixing metrics such as CMI, Number of Switch Points, Burstines, which are used to filter/curate/compare code-mixed corpora have low correlation with human acceptability judgements, underlining the necessity of our dataset. Experiments using Cline demonstrate that simple Multilayer Perceptron (MLP) models trained solely on code-mixing metrics are outperformed by fine-tuned pre-trained Multilingual Large Language Models (MLLMs). Specifically, XLM-Roberta and Bernice outperform IndicBERT across different configurations in challenging data settings. Comparison with ChatGPT's zero and fewshot capabilities shows that MLLMs fine-tuned on larger data outperform ChatGPT, providing scope for improvement in code-mixed tasks. Zero-shot transfer from English-Hindi to English-Telugu acceptability judgments using our model checkpoints proves superior to random baselines, enabling application to other code-mixed language pairs and providing further avenues of research. We publicly release our human-annotated dataset, trained checkpoints, code-mix corpus, and code for data generation and model training.
Abstract:News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.
Abstract:We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.
Abstract:Conversation is the most natural form of human communication, where each utterance can range over a variety of possible emotions. While significant work has been done towards the detection of emotions in text, relatively little work has been done towards finding the cause of the said emotions, especially in multimodal settings. SemEval 2024 introduces the task of Multimodal Emotion Cause Analysis in Conversations, which aims to extract emotions reflected in individual utterances in a conversation involving multiple modalities (textual, audio, and visual modalities) along with the corresponding utterances that were the cause for the emotion. In this paper, we propose models that tackle this task as an utterance labeling and a sequence labeling problem and perform a comparative study of these models, involving baselines using different encoders, using BiLSTM for adding contextual information of the conversation, and finally adding a CRF layer to try to model the inter-dependencies between adjacent utterances more effectively. In the official leaderboard for the task, our architecture was ranked 8th, achieving an F1-score of 0.1759 on the leaderboard.
Abstract:Infrastructure as Code (IaC) is a revolutionary approach which has gained significant prominence in the Industry. IaC manages and provisions IT infrastructure using machine-readable code by enabling automation, consistency across the environments, reproducibility, version control, error reduction and enhancement in scalability. However, IaC orchestration is often a painstaking effort which requires specialised skills as well as a lot of manual effort. Automation of IaC is a necessity in the present conditions of the Industry and in this survey, we study the feasibility of applying Large Language Models (LLM) to address this problem. LLMs are large neural network-based models which have demonstrated significant language processing abilities and shown to be capable of following a range of instructions within a broad scope. Recently, they have also been adapted for code understanding and generation tasks successfully, which makes them a promising choice for the automatic generation of IaC configurations. In this survey, we delve into the details of IaC, usage of IaC in different platforms, their challenges, LLMs in terms of code-generation aspects and the importance of LLMs in IaC along with our own experiments. Finally, we conclude by presenting the challenges in this area and highlighting the scope for future research.