Abstract:While language model (LM)-powered chatbots and generative search engines excel at answering concrete queries, discovering information in the terrain of unknown unknowns remains challenging for users. To emulate the common educational scenario where children/students learn by listening to and participating in conversations of their parents/teachers, we create Collaborative STORM (Co-STORM). Unlike QA systems that require users to ask all the questions, Co-STORM lets users observe and occasionally steer the discourse among several LM agents. The agents ask questions on the user's behalf, allowing the user to discover unknown unknowns serendipitously. To facilitate user interaction, Co-STORM assists users in tracking the discourse by organizing the uncovered information into a dynamic mind map, ultimately generating a comprehensive report as takeaways. For automatic evaluation, we construct the WildSeek dataset by collecting real information-seeking records with user goals. Co-STORM outperforms baseline methods on both discourse trace and report quality. In a further human evaluation, 70% of participants prefer Co-STORM over a search engine, and 78% favor it over a RAG chatbot.
Abstract:Recent work integrating Large Language Models (LLMs) has led to significant improvements in the Knowledge Base Question Answering (KBQA) task. However, we posit that existing KBQA datasets that either have simple questions, use synthetically generated logical forms, or are based on small knowledge base (KB) schemas, do not capture the true complexity of KBQA tasks. To address this, we introduce the SPINACH dataset, an expert-annotated KBQA dataset collected from forum discussions on Wikidata's "Request a Query" forum with 320 decontextualized question-SPARQL pairs. Much more complex than existing datasets, SPINACH calls for strong KBQA systems that do not rely on training data to learn the KB schema, but can dynamically explore large and often incomplete schemas and reason about them. Along with the dataset, we introduce the SPINACH agent, a new KBQA approach that mimics how a human expert would write SPARQLs for such challenging questions. Experiments on existing datasets show SPINACH's capability in KBQA, achieving a new state of the art on the QALD-7, QALD-9 Plus and QALD-10 datasets by 30.1%, 27.0%, and 10.0% in F1, respectively, and coming within 1.6% of the fine-tuned LLaMA SOTA model on WikiWebQuestions. On our new SPINACH dataset, SPINACH agent outperforms all baselines, including the best GPT-4-based KBQA agent, by 38.1% in F1.
Abstract:Persuasion plays a pivotal role in a wide range of applications from health intervention to the promotion of social good. Persuasive chatbots can accelerate the positive effects of persuasion in such applications. Existing methods rely on fine-tuning persuasive chatbots with task-specific training data which is costly, if not infeasible, to collect. To address this issue, we propose a method to leverage the generalizability and inherent persuasive abilities of large language models (LLMs) in creating effective and truthful persuasive chatbot for any given domain in a zero-shot manner. Unlike previous studies which used pre-defined persuasion strategies, our method first uses an LLM to generate responses, then extracts the strategies used on the fly, and replaces any unsubstantiated claims in the response with retrieved facts supporting the strategies. We applied our chatbot, PersuaBot, to three significantly different domains needing persuasion skills: donation solicitation, recommendations, and health intervention. Our experiments on simulated and human conversations show that our zero-shot approach is more persuasive than prior work, while achieving factual accuracy surpassing state-of-the-art knowledge-oriented chatbots. Our study demonstrated that when persuasive chatbots are employed responsibly for social good, it is an enabler of positive individual and social change.
Abstract:We introduce SPAGHETTI: Semantic Parsing Augmented Generation for Hybrid English information from Text Tables and Infoboxes, a hybrid question-answering (QA) pipeline that utilizes information from heterogeneous knowledge sources, including knowledge base, text, tables, and infoboxes. Our LLM-augmented approach achieves state-of-the-art performance on the Compmix dataset, the most comprehensive heterogeneous open-domain QA dataset, with 56.5% exact match (EM) rate. More importantly, manual analysis on a sample of the dataset suggests that SPAGHETTI is more than 90% accurate, indicating that EM is no longer suitable for assessing the capabilities of QA systems today.
Abstract:Creating multilingual task-oriented dialogue (TOD) agents is challenging due to the high cost of training data acquisition. Following the research trend of improving training data efficiency, we show for the first time, that in-context learning is sufficient to tackle multilingual TOD. To handle the challenging dialogue state tracking (DST) subtask, we break it down to simpler steps that are more compatible with in-context learning where only a handful of few-shot examples are used. We test our approach on the multilingual TOD dataset X-RiSAWOZ, which has 12 domains in Chinese, English, French, Korean, Hindi, and code-mixed Hindi-English. Our turn-by-turn DST accuracy on the 6 languages range from 55.6% to 80.3%, seemingly worse than the SOTA results from fine-tuned models that achieve from 60.7% to 82.8%; our BLEU scores in the response generation (RG) subtask are also significantly lower than SOTA. However, after manual evaluation of the validation set, we find that by correcting gold label errors and improving dataset annotation schema, GPT-4 with our prompts can achieve (1) 89.6%-96.8% accuracy in DST, and (2) more than 99% correct response generation across different languages. This leads us to conclude that current automatic metrics heavily underestimate the effectiveness of in-context learning.
Abstract:Many knowledge sources consist of both structured information such as relational databases as well as unstructured free text. Building a conversational interface to such data sources is challenging. This paper introduces SUQL, Structured and Unstructured Query Language, the first formal executable representation that naturally covers compositions of structured and unstructured data queries. Specifically, it augments SQL with several free-text primitives to form a precise, succinct, and expressive representation. This paper also presents a conversational search agent based on large language models, including a few-shot contextual semantic parser for SUQL. To validate our approach, we introduce a dataset consisting of crowdsourced questions and conversations about real restaurants. Over 51% of the questions in the dataset require both structured and unstructured data, suggesting that it is a common phenomenon. We show that our few-shot conversational agent based on SUQL finds an entity satisfying all user requirements 89.3% of the time, compared to just 65.0% for a strong and commonly used baseline.
Abstract:Task-oriented dialogue research has mainly focused on a few popular languages like English and Chinese, due to the high dataset creation cost for a new language. To reduce the cost, we apply manual editing to automatically translated data. We create a new multilingual benchmark, X-RiSAWOZ, by translating the Chinese RiSAWOZ to 4 languages: English, French, Hindi, Korean; and a code-mixed English-Hindi language. X-RiSAWOZ has more than 18,000 human-verified dialogue utterances for each language, and unlike most multilingual prior work, is an end-to-end dataset for building fully-functioning agents. The many difficulties we encountered in creating X-RiSAWOZ led us to develop a toolset to accelerate the post-editing of a new language dataset after translation. This toolset improves machine translation with a hybrid entity alignment technique that combines neural with dictionary-based methods, along with many automated and semi-automated validation checks. We establish strong baselines for X-RiSAWOZ by training dialogue agents in the zero- and few-shot settings where limited gold data is available in the target language. Our results suggest that our translation and post-editing methodology and toolset can be used to create new high-quality multilingual dialogue agents cost-effectively. Our dataset, code, and toolkit are released open-source.
Abstract:As the largest knowledge base, Wikidata is a massive source of knowledge, complementing large language models with well-structured data. In this paper, we present WikiWebQuestions, a high-quality knowledge base question answering benchmark for Wikidata. This new benchmark uses real-world human data with SPARQL annotation to facilitate a more accurate comparison with large language models utilizing the up-to-date answers from Wikidata. Additionally, a baseline for this benchmark is established with an effective training data synthesis methodology and WikiSP, a Seq2Seq semantic parser, that handles large noisy knowledge graphs. Experimental results illustrate the effectiveness of this methodology, achieving 69% and 59% answer accuracy in the dev set and test set, respectively. We showed that we can pair semantic parsers with GPT-3 to provide a combination of verifiable results and qualified guesses that can provide useful answers to 97% of the questions in the dev set of our benchmark.
Abstract:Despite recent advances in Large Language Models (LLMs), users still cannot trust the information provided in their responses. LLMs cannot speak accurately about events that occurred after their training, which are often topics of great interest to users, and, as we show in this paper, they are highly prone to hallucination when talking about less popular (tail) topics. This paper presents WikiChat, a few-shot LLM-based chatbot that is grounded with live information from Wikipedia. Through many iterations of experimentation, we have crafte a pipeline based on information retrieval that (1) uses LLMs to suggest interesting and relevant facts that are individually verified against Wikipedia, (2) retrieves additional up-to-date information, and (3) composes coherent and engaging time-aware responses. We propose a novel hybrid human-and-LLM evaluation methodology to analyze the factuality and conversationality of LLM-based chatbots. We focus on evaluating important but previously neglected issues such as conversing about recent and tail topics. We evaluate WikiChat against strong fine-tuned and LLM-based baselines across a diverse set of conversation topics. We find that WikiChat outperforms all baselines in terms of the factual accuracy of its claims, by up to 12.1%, 28.3% and 32.7% on head, recent and tail topics, while matching GPT-3.5 in terms of providing natural, relevant, non-repetitive and informational responses.
Abstract:Task-oriented Dialogue (ToD) agents are mostly limited to a few widely-spoken languages, mainly due to the high cost of acquiring training data for each language. Existing low-cost approaches that rely on cross-lingual embeddings or naive machine translation sacrifice a lot of accuracy for data efficiency, and largely fail in creating a usable dialogue agent. We propose automatic methods that use ToD training data in a source language to build a high-quality functioning dialogue agent in another target language that has no training data (i.e. zero-shot) or a small training set (i.e. few-shot). Unlike most prior work in cross-lingual ToD that only focuses on Dialogue State Tracking (DST), we build an end-to-end agent. We show that our approach closes the accuracy gap between few-shot and existing full-shot methods for ToD agents. We achieve this by (1) improving the dialogue data representation, (2) improving entity-aware machine translation, and (3) automatic filtering of noisy translations. We evaluate our approach on the recent bilingual dialogue dataset BiToD. In Chinese to English transfer, in the zero-shot setting, our method achieves 46.7% and 22.0% in Task Success Rate (TSR) and Dialogue Success Rate (DSR) respectively. In the few-shot setting where 10% of the data in the target language is used, we improve the state-of-the-art by 15.2% and 14.0%, coming within 5% of full-shot training.