Abstract:Multimodal large language models (MLLMs) are increasingly used to automate chart generation from data tables, enabling efficient data analysis and reporting but also introducing new misuse risks. In this work, we introduce ChartAttack, a novel framework for evaluating how MLLMs can be misused to generate misleading charts at scale. ChartAttack injects misleaders into chart designs, aiming to induce incorrect interpretations of the underlying data. Furthermore, we create AttackViz, a chart question-answering (QA) dataset where each (chart specification, QA) pair is labeled with effective misleaders and their induced incorrect answers. Experiments in in-domain and cross-domain settings show that ChartAttack significantly degrades the QA performance of MLLM readers, reducing accuracy by an average of 19.6 points and 14.9 points, respectively. A human study further shows an average 20.2 point drop in accuracy for participants exposed to misleading charts generated by ChartAttack. Our findings highlight an urgent need for robustness and security considerations in the design, evaluation, and deployment of MLLM-based chart generation systems. We make our code and data publicly available.
Abstract:Realistic text-to-SQL workflows often require joining multiple tables. As a result, accurately retrieving the relevant set of tables becomes a key bottleneck for end-to-end performance. We study an open-book setting where queries must be answered over large, heterogeneous table collections pooled from many sources, without clean scoping signals such as database identifiers. Here, dense retrieval (DR) achieves high recall but returns many distractors, while join-aware alternatives often rely on extra assumptions and/or incur high inference overhead. We propose CORE-T, a scalable, training-free framework that enriches tables with LLM-generated purpose metadata and pre-computes a lightweight table-compatibility cache. At inference time, DR returns top-K candidates; a single LLM call selects a coherent, joinable subset, and a simple additive adjustment step restores strongly compatible tables. Across Bird, Spider, and MMQA, CORE-T improves table-selection F1 by up to 22.7 points while retrieving up to 42% fewer tables, improving multi-table execution accuracy by up to 5.0 points on Bird and 6.9 points on MMQA, and using 4-5x fewer tokens than LLM-intensive baselines.
Abstract:Multimodal Large Language Models (MLLMs) can directly consume exam documents, threatening conventional assessments and academic integrity. We present DoPE (Decoy-Oriented Perturbation Encapsulation), a document-layer defense framework that embeds semantic decoys into PDF/HTML assessments to exploit render-parse discrepancies in MLLM pipelines. By instrumenting exams at authoring time, DoPE provides model-agnostic prevention (stop or confound automated solving) and detection (flag blind AI reliance) without relying on conventional one-shot classifiers. We formalize prevention and detection tasks, and introduce FewSoRT-Q, an LLM-guided pipeline that generates question-level semantic decoys and FewSoRT-D to encapsulate them into watermarked documents. We evaluate on Integrity-Bench, a novel benchmark of 1826 exams (PDF+HTML) derived from public QA datasets and OpenCourseWare. Against black-box MLLMs from OpenAI and Anthropic, DoPE yields strong empirical gains: a 91.4% detection rate at an 8.7% false-positive rate using an LLM-as-Judge verifier, and prevents successful completion or induces decoy-aligned failures in 96.3% of attempts. We release Integrity-Bench, our toolkit, and evaluation code to enable reproducible study of document-layer defenses for academic integrity.
Abstract:Large Language Models (LLMs) can now solve entire exams directly from uploaded PDF assessments, raising urgent concerns about academic integrity and the reliability of grades and credentials. Existing watermarking techniques either operate at the token level or assume control over the model's decoding process, making them ineffective when students query proprietary black-box systems with instructor-provided documents. We present Integrity Shield, a document-layer watermarking system that embeds schema-aware, item-level watermarks into assessment PDFs while keeping their human-visible appearance unchanged. These watermarks consistently prevent MLLMs from answering shielded exam PDFs and encode stable, item-level signatures that can be reliably recovered from model or student responses. Across 30 exams spanning STEM, humanities, and medical reasoning, Integrity Shield achieves exceptionally high prevention (91-94% exam-level blocking) and strong detection reliability (89-93% signature retrieval) across four commercial MLLMs. Our demo showcases an interactive interface where instructors upload an exam, preview watermark behavior, and inspect pre/post AI performance & authorship evidence.
Abstract:Evaluating the quality of tables generated by large language models (LLMs) remains an open challenge: existing metrics either flatten tables into text, ignoring structure, or rely on fixed references that limit generalization. We present TabReX, a reference-less, property-driven framework for evaluating tabular generation via graph-based reasoning. TabReX converts both source text and generated tables into canonical knowledge graphs, aligns them through an LLM-guided matching process, and computes interpretable, rubric-aware scores that quantify structural and factual fidelity. The resulting metric provides controllable trade-offs between sensitivity and specificity, yielding human-aligned judgments and cell-level error traces. To systematically asses metric robustness, we introduce TabReX-Bench, a large-scale benchmark spanning six domains and twelve planner-driven perturbation types across three difficulty tiers. Empirical results show that TabReX achieves the highest correlation with expert rankings, remains stable under harder perturbations, and enables fine-grained model-vs-prompt analysis establishing a new paradigm for trustworthy, explainable evaluation of structured generation systems.
Abstract:Recent advances in multimodal large language models (MLLMs) have yielded increasingly powerful models, yet their perceptual capacities remain poorly characterized. In practice, most model families scale language component while reusing nearly identical vision encoders (e.g., Qwen2.5-VL 3B/7B/72B), which raises pivotal concerns about whether progress reflects genuine visual grounding or reliance on internet-scale textual world knowledge. Existing evaluation methods emphasize end-task accuracy, overlooking robustness, attribution fidelity, and reasoning under controlled perturbations. We present The Perceptual Observatory, a framework that characterizes MLLMs across verticals like: (i) simple vision tasks, such as face matching and text-in-vision comprehension capabilities; (ii) local-to-global understanding, encompassing image matching, grid pointing game, and attribute localization, which tests general visual grounding. Each vertical is instantiated with ground-truth datasets of faces and words, systematically perturbed through pixel-based augmentations and diffusion-based stylized illusions. The Perceptual Observatory moves beyond leaderboard accuracy to yield insights into how MLLMs preserve perceptual grounding and relational structure under perturbations, providing a principled foundation for analyzing strengths and weaknesses of current and future models.
Abstract:Existing tabular reasoning benchmarks mostly test models on small, uniform tables, underrepresenting the complexity of real-world data and giving an incomplete view of Large Language Models' (LLMs) reasoning abilities. Real tables are long, heterogeneous, and domain-specific, mixing structured fields with free text and requiring multi-hop reasoning across thousands of tokens. To address this gap, we introduce RUST-BENCH, a benchmark of 7966 questions from 2031 real-world tables spanning two domains: i) RB-Science (NSF grant records) and ii) RB-Sports (NBA statistics). Unlike prior work, RUST-BENCH evaluates LLMs jointly across scale, heterogeneity, domain specificity, and reasoning complexity. Experiments with open-source and proprietary models show that LLMs struggle with heterogeneous schemas and complex multi-hop inference, revealing persistent weaknesses in current architectures and prompting strategies. RUST-BENCH establishes a challenging new testbed for advancing tabular reasoning research.




Abstract:Tabular learning transforms raw features into optimized spaces for downstream tasks, but its effectiveness deteriorates under distribution shifts between training and testing data. We formalize this challenge as the Distribution Shift Tabular Learning (DSTL) problem and propose a novel Shift-Aware Feature Transformation (SAFT) framework to address it. SAFT reframes tabular learning from a discrete search task into a continuous representation-generation paradigm, enabling differentiable optimization over transformed feature sets. SAFT integrates three mechanisms to ensure robustness: (i) shift-resistant representation via embedding decorrelation and sample reweighting, (ii) flatness-aware generation through suboptimal embedding averaging, and (iii) normalization-based alignment between training and test distributions. Extensive experiments show that SAFT consistently outperforms prior tabular learning methods in terms of robustness, effectiveness, and generalization ability under diverse real-world distribution shifts.
Abstract:Video stabilization remains a fundamental problem in computer vision, particularly pixel-level synthesis solutions for video stabilization, which synthesize full-frame outputs, add to the complexity of this task. These methods aim to enhance stability while synthesizing full-frame videos, but the inherent diversity in motion profiles and visual content present in each video sequence makes robust generalization with fixed parameters difficult. To address this, we present a novel method that improves pixel-level synthesis video stabilization methods by rapidly adapting models to each input video at test time. The proposed approach takes advantage of low-level visual cues available during inference to improve both the stability and visual quality of the output. Notably, the proposed rapid adaptation achieves significant performance gains even with a single adaptation pass. We further propose a jerk localization module and a targeted adaptation strategy, which focuses the adaptation on high-jerk segments for maximizing stability with fewer adaptation steps. The proposed methodology enables modern stabilizers to overcome the longstanding SOTA approaches while maintaining the full frame nature of the modern methods, while offering users with control mechanisms akin to classical approaches. Extensive experiments on diverse real-world datasets demonstrate the versatility of the proposed method. Our approach consistently improves the performance of various full-frame synthesis models in both qualitative and quantitative terms, including results on downstream applications.
Abstract:We present a modular, interactive system, SPORTSQL, for natural language querying and visualization of dynamic sports data, with a focus on the English Premier League (EPL). The system translates user questions into executable SQL over a live, temporally indexed database constructed from real-time Fantasy Premier League (FPL) data. It supports both tabular and visual outputs, leveraging the symbolic reasoning capabilities of Large Language Models (LLMs) for query parsing, schema linking, and visualization selection. To evaluate system performance, we introduce the Dynamic Sport Question Answering benchmark (DSQABENCH), comprising 1,700+ queries annotated with SQL programs, gold answers, and database snapshots. Our demo highlights how non-expert users can seamlessly explore evolving sports statistics through a natural, conversational interface.