Abstract:The vast amount of online information today poses challenges for non-English speakers, as much of it is concentrated in high-resource languages such as English and French. Wikipedia reflects this imbalance, with content in low-resource languages frequently outdated or incomplete. Recent research has sought to improve cross-language synchronization of Wikipedia tables using rule-based methods. These approaches can be effective, but they struggle with complexity and generalization. This paper explores large language models (LLMs) for multilingual information synchronization, using zero-shot prompting as a scalable solution. We introduce the Information Updation dataset, simulating the real-world process of updating outdated Wikipedia tables, and evaluate LLM performance. Our findings reveal that single-prompt approaches often produce suboptimal results, prompting us to introduce a task decomposition strategy that enhances coherence and accuracy. Our proposed method outperforms existing baselines, particularly in Information Updation (1.79%) and Information Addition (20.58%), highlighting the model strength in dynamically updating and enriching data across architectures
Abstract:Humans continuously make new discoveries, and understanding temporal sequence of events leading to these breakthroughs is essential for advancing science and society. This ability to reason over time allows us to identify future steps and understand the effects of financial and political decisions on our lives. However, large language models (LLMs) are typically trained on static datasets, limiting their ability to perform effective temporal reasoning. To assess the temporal reasoning capabilities of LLMs, we present the TRANSIENTTABLES dataset, which comprises 3,971 questions derived from over 14,000 tables, spanning 1,238 entities across multiple time periods. We introduce a template-based question-generation pipeline that harnesses LLMs to refine both templates and questions. Additionally, we establish baseline results using state-of-the-art LLMs to create a benchmark. We also introduce novel modeling strategies centered around task decomposition, enhancing LLM performance.
Abstract:Vision-language models (VLMs) excel at tasks requiring joint understanding of visual and linguistic information. A particularly promising yet under-explored application for these models lies in answering questions based on various kinds of maps. This study investigates the efficacy of VLMs in answering questions based on choropleth maps, which are widely used for data analysis and representation. To facilitate and encourage research in this area, we introduce a novel map-based question-answering benchmark, consisting of maps from three geographical regions (United States, India, China), each containing 1000 questions. Our benchmark incorporates 43 diverse question templates, requiring nuanced understanding of relative spatial relationships, intricate map features, and complex reasoning. It also includes maps with discrete and continuous values, encompassing variations in color-mapping, category ordering, and stylistic patterns, enabling comprehensive analysis. We evaluate the performance of multiple VLMs on this benchmark, highlighting gaps in their abilities and providing insights for improving such models.
Abstract:Existing datasets for tabular question answering typically focus exclusively on text within cells. However, real-world data is inherently multimodal, often blending images such as symbols, faces, icons, patterns, and charts with textual content in tables. With the evolution of AI models capable of multimodal reasoning, it is pertinent to assess their efficacy in handling such structured data. This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data. We explore their ability to reason on tables that integrate both images and text, introducing MMTabQA, a new dataset designed for this purpose. Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs, understanding visual context, and comparing visual content across images. These findings establish our dataset as a robust benchmark for advancing AI's comprehension and capabilities in analyzing multimodal structured data.
Abstract:Temporal reasoning over tabular data presents substantial challenges for large language models (LLMs), as evidenced by recent research. In this study, we conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of LLMs. Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for tabular temporal question answering. We provide critical insights for improving LLM performance in temporal reasoning tasks with tabular data. Furthermore, we introduce a novel approach, C.L.E.A.R to strengthen LLM capabilities in this domain. Our findings demonstrate that our method significantly improves evidence-based reasoning across various models. Additionally, our experimental results reveal that indirect supervision with auxiliary data substantially boosts model performance in these tasks. This work contributes to a deeper understanding of LLMs' temporal reasoning abilities over tabular data and promotes advancements in their application across diverse fields.
Abstract:Cognitive textual and visual reasoning tasks, such as puzzles, series, and analogies, demand the ability to quickly reason, decipher, and evaluate patterns both textually and spatially. While LLMs and VLMs, through extensive training on large amounts of human-curated data, have attained a high level of pseudo-human intelligence in some common sense reasoning tasks, they still struggle with more complex reasoning tasks that require cognitive understanding. In this work, we introduce a new dataset, NTSEBench, designed to evaluate the cognitive multi-modal reasoning and problem-solving skills of large models. The dataset comprises 2,728 multiple-choice questions comprising of a total of 4,642 images across 26 categories sampled from the NTSE examination conducted nationwide in India, featuring both visual and textual general aptitude questions that do not rely on rote learning. We establish baselines on the dataset using state-of-the-art LLMs and VLMs. To facilitate a comparison between open source and propriety models, we propose four distinct modeling strategies to handle different modalities (text and images) in the dataset instances.
Abstract:Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.
Abstract:Tabular reasoning involves interpreting unstructured queries against structured tables, requiring a synthesis of textual understanding and symbolic reasoning. Existing methods rely on either of the approaches and are constrained by their respective limitations. Textual reasoning excels in semantic interpretation unlike symbolic reasoning (SQL logic), but falls short in mathematical reasoning where SQL excels. In this paper, we introduce a novel algorithm H-STAR, comprising table extraction and adaptive reasoning, integrating both symbolic and semantic (text-based) approaches. To enhance evidence extraction, H-STAR employs a multi-view approach, incorporating step-by-step row and column retrieval. It also adapts reasoning strategies based on question types, utilizing symbolic reasoning for quantitative and logical tasks, and semantic reasoning for direct lookup and complex lexical queries. Our extensive experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three tabular question-answering (QA) and fact-verification datasets, underscoring its effectiveness and efficiency.
Abstract:Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
Abstract:To completely understand a document, the use of textual information is not enough. Understanding visual cues, such as layouts and charts, is also required. While the current state-of-the-art approaches for document understanding (both OCR-based and OCR-free) work well, a thorough analysis of their capabilities and limitations has not yet been performed. Therefore, in this work, we addresses the limitation of current VisualQA models when applied to charts and plots. To investigate shortcomings of the state-of-the-art models, we conduct a comprehensive behavioral analysis, using ChartQA as a case study. Our findings indicate that existing models particularly underperform in answering questions related to the chart's structural and visual context, as well as numerical information. To address these issues, we propose three simple pre-training tasks that enforce the existing model in terms of both structural-visual knowledge, as well as its understanding of numerical questions. We evaluate our pre-trained model (called MatCha-v2) on three chart datasets - both extractive and abstractive question datasets - and observe that it achieves an average improvement of 1.7% over the baseline model.