Abstract:In machine learning, a loss function measures the difference between model predictions and ground-truth (or target) values. For neural network models, visualizing how this loss changes as model parameters are varied can provide insights into the local structure of the so-called loss landscape (e.g., smoothness) as well as global properties of the underlying model (e.g., generalization performance). While various methods for visualizing the loss landscape have been proposed, many approaches limit sampling to just one or two directions, ignoring potentially relevant information in this extremely high-dimensional space. This paper introduces a new representation based on topological data analysis that enables the visualization of higher-dimensional loss landscapes. After describing this new topological landscape profile representation, we show how the shape of loss landscapes can reveal new details about model performance and learning dynamics, highlighting several use cases, including image segmentation (e.g., UNet) and scientific machine learning (e.g., physics-informed neural networks). Through these examples, we provide new insights into how loss landscapes vary across distinct hyperparameter spaces: we find that the topology of the loss landscape is simpler for better-performing models; and we observe greater variation in the shape of loss landscapes near transitions from low to high model performance.
Abstract:Characterizing the loss of a neural network with respect to model parameters, i.e., the loss landscape, can provide valuable insights into properties of that model. Various methods for visualizing loss landscapes have been proposed, but less emphasis has been placed on quantifying and extracting actionable and reproducible insights from these complex representations. Inspired by powerful tools from topological data analysis (TDA) for summarizing the structure of high-dimensional data, here we characterize the underlying shape (or topology) of loss landscapes, quantifying the topology to reveal new insights about neural networks. To relate our findings to the machine learning (ML) literature, we compute simple performance metrics (e.g., accuracy, error), and we characterize the local structure of loss landscapes using Hessian-based metrics (e.g., largest eigenvalue, trace, eigenvalue spectral density). Following this approach, we study established models from image pattern recognition (e.g., ResNets) and scientific ML (e.g., physics-informed neural networks), and we show how quantifying the shape of loss landscapes can provide new insights into model performance and learning dynamics.
Abstract:Effective fraud detection and analysis of government-issued identity documents, such as passports, driver's licenses, and identity cards, are essential in thwarting identity theft and bolstering security on online platforms. The training of accurate fraud detection and analysis tools depends on the availability of extensive identity document datasets. However, current publicly available benchmark datasets for identity document analysis, including MIDV-500, MIDV-2020, and FMIDV, fall short in several respects: they offer a limited number of samples, cover insufficient varieties of fraud patterns, and seldom include alterations in critical personal identifying fields like portrait images, limiting their utility in training models capable of detecting realistic frauds while preserving privacy. In response to these shortcomings, our research introduces a new benchmark dataset, IDNet, designed to advance privacy-preserving fraud detection efforts. The IDNet dataset comprises 837,060 images of synthetically generated identity documents, totaling approximately 490 gigabytes, categorized into 20 types from $10$ U.S. states and 10 European countries. We evaluate the utility and present use cases of the dataset, illustrating how it can aid in training privacy-preserving fraud detection methods, facilitating the generation of camera and video capturing of identity documents, and testing schema unification and other identity document management functionalities.
Abstract:The development of cancer is difficult to express on a simple and intuitive level due to its complexity. Since cancer is so widespread, raising public awareness about its mechanisms can help those affected cope with its realities, as well as inspire others to make lifestyle adjustments and screen for the disease. Unfortunately, studies have shown that cancer literature is too technical for the general public to understand. We found that musification, the process of turning data into music, remains an unexplored avenue for conveying this information. We explore the pedagogical effectiveness of musification through the use of an algorithm that manipulates a piece of music in a manner analogous to the development of cancer. We conducted two lab studies and found that our approach is marginally more effective at promoting cancer literacy when accompanied by a text-based article than text-based articles alone.
Abstract:We study deceptive fairness attacks on graphs to answer the following question: How can we achieve poisoning attacks on a graph learning model to exacerbate the bias deceptively? We answer this question via a bi-level optimization problem and propose a meta learning-based framework named FATE. FATE is broadly applicable with respect to various fairness definitions and graph learning models, as well as arbitrary choices of manipulation operations. We further instantiate FATE to attack statistical parity and individual fairness on graph neural networks. We conduct extensive experimental evaluations on real-world datasets in the task of semi-supervised node classification. The experimental results demonstrate that FATE could amplify the bias of graph neural networks with or without fairness consideration while maintaining the utility on the downstream task. We hope this paper provides insights into the adversarial robustness of fair graph learning and can shed light on designing robust and fair graph learning in future studies.
Abstract:Geographic regression models of various descriptions are often applied to identify patterns and anomalies in the determinants of spatially distributed observations. These types of analyses focus on answering why questions about underlying spatial phenomena, e.g., why is crime higher in this locale, why do children in one school district outperform those in another, etc.? Answers to these questions require explanations of the model structure, the choice of parameters, and contextualization of the findings with respect to their geographic context. This is particularly true for local forms of regression models which are focused on the role of locational context in determining human behavior. In this paper, we present GeoExplainer, a visual analytics framework designed to support analysts in creating explanative documentation that summarizes and contextualizes their spatial analyses. As analysts create their spatial models, our framework flags potential issues with model parameter selections, utilizes template-based text generation to summarize model outputs, and links with external knowledge repositories to provide annotations that help to explain the model results. As analysts explore the model results, all visualizations and annotations can be captured in an interactive report generation widget. We demonstrate our framework using a case study modeling the determinants of voting in the 2016 US Presidential Election.
Abstract:In graph machine learning, data collection, sharing, and analysis often involve multiple parties, each of which may require varying levels of data security and privacy. To this end, preserving privacy is of great importance in protecting sensitive information. In the era of big data, the relationships among data entities have become unprecedentedly complex, and more applications utilize advanced data structures (i.e., graphs) that can support network structures and relevant attribute information. To date, many graph-based AI models have been proposed (e.g., graph neural networks) for various domain tasks, like computer vision and natural language processing. In this paper, we focus on reviewing privacy-preserving techniques of graph machine learning. We systematically review related works from the data to the computational aspects. We first review methods for generating privacy-preserving graph data. Then we describe methods for transmitting privacy-preserved information (e.g., graph model parameters) to realize the optimization-based computation when data sharing among multiple parties is risky or impossible. In addition to discussing relevant theoretical methodology and software tools, we also discuss current challenges and highlight several possible future research opportunities for privacy-preserving graph machine learning. Finally, we envision a unified and comprehensive secure graph machine learning system.
Abstract:Directly motivated by security-related applications from the Homeland Security Enterprise, we focus on the privacy-preserving analysis of graph data, which provides the crucial capacity to represent rich attributes and relationships. In particular, we discuss two directions, namely privacy-preserving graph generation and federated graph learning, which can jointly enable the collaboration among multiple parties each possessing private graph data. For each direction, we identify both "quick wins" and "hard problems". Towards the end, we demonstrate a user interface that can facilitate model explanation, interpretation, and visualization. We believe that the techniques developed in these directions will significantly enhance the capabilities of the Homeland Security Enterprise to tackle and mitigate the various security risks.
Abstract:Disinformation refers to false information deliberately spread to influence the general public, and the negative impact of disinformation on society can be observed for numerous issues, such as political agendas and manipulating financial markets. In this paper, we identify prevalent challenges and advances related to automated disinformation detection from multiple aspects, and propose a comprehensive and explainable disinformation detection framework called DISCO. It leverages the heterogeneity of disinformation and addresses the prediction opaqueness. Then we provide a demonstration of DISCO on a real-world fake news detection task with satisfactory detection accuracy and explanation. The demo video and source code of DISCO is now publicly available. We expect that our demo could pave the way for addressing the limitations of identification, comprehension, and explainability as a whole.
Abstract:In this paper, we utilized generative models, and reformulate it for problems in molecular dynamics (MD) simulation, by introducing an MD potential energy component to our generative model. By incorporating potential energy as calculated from TorchMD into a conditional generative framework, we attempt to construct a low-potential energy route of transformation between the helix~$\rightarrow$~coil structures of a protein. We show how to add an additional loss function to conditional generative models, motivated by potential energy of molecular configurations, and also present an optimization technique for such an augmented loss function. Our results show the benefit of this additional loss term on synthesizing realistic molecular trajectories.